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Abstract 
Honeydew honey is produced by bees from excretions – the honeydew – of plant-sucking 

insects. Honeydew can be produced by different insect-species, such as the genera Cinara and 

Physokermes on conifers and the genera Eucallipterus on lime trees. Therefore, honeydew 

honey can stem from different botanical as well as different zoological origins. In order to 

investigate the process from phloem sap to honeydew, honeydew samples from different 

Hemipteran species were collected and the sugar, amino acid, and inorganic ion profiles were 

determined. Honeydew from all species contains different proportions of hexoses, sucrose, 

melezitose, erlose, and trehalose, whereas the phloem exudates of the host trees contain no 

trisaccharide. That was confirmed by incubating whole-body homogenates of different aphid 

species with sucrose, the outcome of which was melezitose and erlose. Additionally, the 

classification of honeydew samples on the basis of their sugar profiles showed that the 

proportions of sugars differed significantly between different hemipteran species feeding on the 

same tree species. Moreover, statistical analyses reveal that the sugar composition of honeydew 

is determined more by the hemipteran species than by the host plant.  

In order to identify the botanical and zoological origin of honeydew honey, fir, spruce, and pine 

honey samples were collected and analyzed. Fir and spruce samples were collected in different 

locations in south Germany, pine honey samples were collected in Turkey. Pine honeys can be 

separated from fir and spruce honey because of their high contents of (undef 3) sugar and 

inorganic ions. In addition, fir and spruce honey can be divided in three groups: 

Physokermes/spruce, Cinara/spruce, and Cinara/fir. Physokermes/spruce honey also has a 

significantly higher content of phosphate and (undef 6) sugar than the other two honeys. To 

reliably distinguish between fir/Cinara and spruce/Cinara honey, however, no chemical marker 

was found within the analyzed compounds.  

In order to clarify the origin of linden honey, sugars, amino acids, and inorganic ions, profiles 

for honeydew, nectar, and honey from Tilia sp. were determined. Melezitose and erlose were 

determined in the honeydew and in the honey, but not in the nectar. In addition, the incubation 

of whole-body homogenates of different aphid species with sucrose, resulting in melezitose and 

erlose, confirmed our results. Finally, the ability of honeybees’ cleavage enzymes to digest 

melezitose was also investigated. Honeybees’ abdomen enzymes are able to cleave melezitose 

and produce glucose and fructose; this process, however, is not as efficient as the cleavage of 

sucrose. 
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Zusammenfassung  
Honigtauhonig wird von Bienen aus den Ausscheidungen – dem Honigtau – von 

pflanzensaugenden Insekten hergestellt. Honigtau wird von verschiedenen Insektenarten 

produziert, z.B. von den Gattungen Cinara und Physokermes auf Nadelbäumen. Honigtauhonig 

kann daher sowohl von verschiedenen botanischen als auch verschiedenen zoologischen 

Herkünften stammen. Um die Umwandlungsprozesse von Phloemsaft zu Honigtau zu 

untersuchen, wurden Honigtauproben von verschiedenen Hemipteren-Arten gesammelt und die 

Zucker-, Aminosäure- und anorganischen Ionenprofile erstellt. Honigtau von allen Arten 

enthielt unterschiedliche Anteile an Hexosen, Saccharose, Melezitose, Erlose und Trehalose, 

während die Phloem-Exsudate der Wirtsbäume keine Trisaccharide enthielten. Dies wurde 

durch die Inkubation von Ganzkörperhomogenaten verschiedener Blattlausarten mit 

Saccharose und den daraus resultierenden Trisacchariden Melezitose und Erlose bestätigt. 

Zusätzlich wurden Honigtauproben aufgrund ihrer Zuckerprofile klassifiziert. Die 

Zuckeranteile unterschieden sich signifikant zwischen unterschiedlichen Lausarten, die sich 

von der gleichen Baumart ernährten. Darüber hinaus zeigen statistische Analysen, dass die 

Zuckerzusammensetzung von Honigtau eher durch die Lausarten als durch die Wirtspflanze 

bestimmt wird.  

Um die botanische und zoologische Herkunft des Honigtauhonigs zu identifizieren, wurden 

Tannen-, Fichten- und Kiefernhonigproben gesammelt und analysiert. Tannen- und 

Fichtenhonigproben wurden an verschiedenen Orten in Süddeutschland gesammelt, 

Kiefernhonigproben wurde in der Türkei gesammelt. Kiefernhonige konnten wegen ihres hohen 

Gehalts an (undef 3) Zucker und anorganischen Ionen von Tannen- und Fichtenhonig 

unterschieden werden. Darüber hinaus konnten Tannen- und Fichtenhonig in drei Gruppen 

unterteilt werden: Physokermes/Fichte, Cinara/Fichte und Cinara/Tanne. 

Physokermes/Fichtenhonig weist einen signifikant höheren Gehalt an Phosphat und (undef 6) 

Zucker als die anderen beiden Honige auf. Jedoch wurde kein chemischer Marker innerhalb der 

Kategorien der analysierten Verbindungen gefunden um verlässlich zwischen Tanne/Cinara 

und Fichte/Cinara-Honig unterscheiden zu können.  

Zusätzlich wurde die Melizitose-Verdaufähigkeit der Spalt-Enzyme der Honigbienen 

untersucht. Die Enzyme im Abdomen der Honigbiene sind in der Lage, Melezitose in Glukose 

und Fruktose zu spalten, dies ist aber nicht so effizient wie die Spaltung von Saccharose. 
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1. Introduction 
Honey is a naturally sweet substance produced by the honeybee Apis mellifera from the nectar 

of flowers or the secretion left behind by plant-sucking insects (honeydew). Honey can be 

distinguished in different ways. It can be declared either by botanical, zoological or 

geographical origin. The most common distinction according to botanical origin is between 

blossom honey and honeydew honey. Nowadays, honey is the most important primary product 

of beekeeping and is studied in the most detail with regard to its effectiveness and composition. 

The quality of honey is defined by various standards in the European food law. The high value 

placed on honey as a product is also reflected in its economic interest. About 1.5 million tons 

of honey are produced per year. In Germany alone, about 100,000 tons are consumed per year, 

with a per capita consumption of about 1.4 kg. Therefore, the Germans register the largest 

average consumption world-wide (Beckmann 2008). 

Native honeydew honeys, known as forest honeys, are among the most desirable honeys in 

Germany due to their spicy and malty taste. In addition, spruce honeys and fir honeys are the 

most produced honeydew honeys in Germany (Kunkel and Kloft 1985). As pure fir honeys are 

considered preferable among other forest honeys and they are rare due to the small number of 

fir stands, they can be sold particularly profitable (BMEL 2016). To date, fir honey can only be 

distinguished from spruce honey by sensory means. However, chemical or physical parameters 

which can be specifically assigned to fir or spruce are still missing (Bertoncelj et al.  2011). 

Therefore, the local or regional origin, the botanical origin (fir or spruce) and the zoological 

species (honeydew producers) can currently not be clearly controlled either by the official food 

control authorities or by scientists using chemical analyses and parameters in order to protect 

the consumer from deception. 

In order to identify the botanical (host tree), zoological (honeydew producers) and geographical 

origin of honeydew honeys, the project BoogIH was established (https://boogih.uni-

hohenheim.de/startseite). Several analytical methods are necessary to clarify these claims. 

Apart from the honeydew honeys’ economic importance, there is also a relevance for the health 

and stability of honeybees’ populations. Honeydew can contain melezitose, which can lead to 

up to 30% bee population losses in cases where the population is wintering with more than 20 

% melezitose proportions (Bogdanov 1985). Therefore, the determination of the melezitose 

proportion in honeydew and the identification of the factors that influence its proportion is 

remarkably important for the health, the spread and the prosperity of honeybees’ populations. 
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1.1. Host plants 

Honeydew-producing plants include mainly conifers such as the genus Abies sp., Picea sp. and 

Pinus sp. and deciduous trees of the genus Quercus sp., Castanea sp., Ulmus sp. and Fraxinus 

sp. as well as Fagus sylvatica L. and Corylus avellana L. (Diez et al.  2004; von der Ohe et al.  

2004). All of them have vascular vessels to transport water and assimilates throughout the plant. 

Transporting elements within vascular plants are the phloem, which transports mainly 

assimilates, and the xylem, which transports water and minerals. 

Phloem sap is generally dominated by sucrose, with concentrations ranging from 0.7 to 1.5M 

(Fink et al.  2018; Lohaus and Moellers 2000 and Woodring et al.  2004). However, some tree 

species also translocate oligosaccharides of the raffinose family like members of the Oleaceae 

(Öner-Sieben and Lohaus 2014). Additionally, members of the Rosaceae also transport some 

sugar alcohols in the phloem sap (Nadwodnik and Lohaus 2008). 

Phloem sap also contains amino acids with a concentration of 50 to 200 mM. Although some 

amino acids, like GLU, GLN, ASP, and ASN, are dominant in different plant species (Lohaus 

and Moellers 2000 and Woodring et al.  2004), all amino acids were found in the phloem sap 

(Sandström and Moran 2001). Ions were also determined in the phloem. 

Despite the fact that all amino acids were found and the high sugar concentrations, phloem sap 

is not an ideal diet for insects. This is because of its high osmotic pressure, the low ratio of 

amino acids compared to sugars, and the ratio of essential-to-non-essential amino acid, which 

is lower in phloem sap than in the insect protein (Douglas 2006). 

Spruce (Picea abies (L.) H. Kast.) belongs to the Pinaceae, genus of  Picea. It occurs mainly in 

Central, Eastern and Northern Europe. Spruce translocates mainly sucrose in the phloem sap 

(Ziegler and Mittler 1959). 

Fir (Abies alba Mill.) belongs to the Pinaceae, genus of Abies. It is common in humid locations 

in Central, South and Southeast Europe. Fir is characterized by its deep root system, which 

makes it a stabilizing element in stepped forests created by natural regeneration (Kutschera and 

Lichtenegger 2002). 

The lime trees (Tilia sp.)  belongs to the Malvaceae. The genus Tilia contain almost 45 different 

species. The winter linden (Tilia cordata Mill.) and the large-leaved linden (Tilia platyphyllos 

Scop.) are the most common ones in Europa. The linden flowers differently depending on its 

species, for example the large-leaved linden flowers in June.  
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1.2. Honeydew producers 

Honeydew producers belong to the insect order Hemiptera. Important groups within this order 

are the animals of the order Aphidinia (aphids), Coccina (scale insects, especially lecania) and 

Auchenorrhyncha (cicadas). They live on leaves, branches and twigs (Kloft et al.  1985). They 

use their bristles to directly pierce the sieve tubes of herbs, shrubs, and trees. The uptake into 

the feeding tube is either passive due to the turgor pressure that exists in the plant or active by 

sucking (Nabors and Scheibe 2007). The honeydew excreted by the hemipteran species differs 

significantly from the phloem sap ingested, and this is due to the enzymes added by the 

hemipteran species, such as invertases (Auclair 1958; Auclair 1959). Since it was already 

subject to enzymatic changes in the intestines of honeydew producers as well as through 

microorganisms living in the intestine, significantly higher amounts of oligosaccharides such 

as maltose, erlose and melezitose are found in honeydew (Doner 1977). The amount of 

honeydew excreted per hour can exceed the body weight of some species. However, there is a 

big variation from species to species (Mittler 1957; Mittler 1958). Freshly excreted honeydew 

is a clear colorless liquid with a dry matter content of 5-18% and it increases to 35-50% by 

evaporation.  

Honeydew is mainly composed of sugars: there are different monosaccharides (glucose, 

fructose), disaccharides (e.g. sucrose, trehalose, maltose) and trisaccharides (e.g. melezitose, 

erlose, raffinose) (Hendrix et al.  1992, Bacon  and Dickinson 1957 and Liebig 1979). However, 

inorganic ions, amino acids, proteins and other compounds were also found in honeydew 

(Auclair 1963; Leroy et al.  2011; Sabri et al.  2013; Völkl et al.  1999).  

The honeydew content is mainly determined by the honeydew producers. However, host plant 

species, seasonal changes, and environmental conditions can also affect the composition of 

honeydew (Sandström and Maron 2001; Fischer et al.  2002 and Hendrix et al.  1992). 

Moreover, samples from the same aphis species feeding on the same host plant differ strongly 

among each other (Fischer and Shingleton 2001).  

Different aphid species feeding on different host trees Fig 1. 1, Table 1. 1. Cinara pectinatae 

(Nördlinger, 1880), Cinara confinis (Koch, 1856) feeding on fir, Cinara pilicornis (Hartig, 

1841), Cinara piceae (Panzer, 1801), Physokermes piceae (Schrank, 1801), and Physokermes 

hemicryphus (Dalman, 1826) feeding on spruce, and Eucallipterus tiliae (Linnaeus, 1758) 

feeding on lime trees. 
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Table 1. 1. Honeydew producers and their host plants 

Host plant Honeydew producers 

Picea abies 

Cinara pilicornis 

Cinara piceae 

Physokermes piceae 

Physokermes hemicryphus 

Abies alba 
Cinara pectinatae 

Cinara confinis 

Tilia sp. Eucallipterus tiliae 

 

The Lachniden (Cinara sp.) are mobile through their life-times. They can produce more than 

one generation per year. Their sucking place is almost always unprotected, for example against 

weather influences. Therefore, they are very dependent on the weather conditions. The 

honeydew is usually droped by Cinara sp., so that it can be found further away from honeydew 

producers. On the contrary, Lecania (Physokermes sp.) are immobile for most of their lives, 

therefore they do not change their suction point. The suction point lies hidden under the 

whisking shed, thus, they can develop without remarkable impact of the weather (Kloft and 

Kunkel 1985). 

 



 

7 
 

 

Fig 1. 1. Some honeydew producers while feeding on host plants (https://boogih.uni-
hohenheim.de/startseite) 

1.3. Honeybees  
Honeybees (Apis mellifera) belong to the social insects that live together collectively in a 

beehive. They usually live in colonies consisting of one queen, 10,000 - 30,000 female worker 

bees and zero to several thousand male drones. Worker bees perform all tasks connected with 

colonial life, such as building combs and collecting pollen, nectar or honeydew. The queen is 

the only reproductive animal in the colony and is therefore responsible for its preservation. 

Worker bees and queen bees of a colony have very different lifetimes. While the former live 

only three to six weeks in spring and summer and up to four months in winter, the latter can 
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live two to three years. However, queens usually live less than one year in hives used for 

commercial honey production (Page and Peng 2001). Workers produce honey; they gather 

nectar or honeydew in their honey stomach, and then they stock it in honeycombs. In addition, 

cervical gland enzymes are added to the sweet liquid so that the honey is transformed for 

example catalyzing the cleavage of sucrose into glucose and fructose (Kubota et al.  2004).  

1.4. Honeydew honey 

Honeydew honey is a natural sweet substance produced by Apis mellifera from secretions of 

living parts of plants or from excretions of plant-sucking insects (Directive 2014/63/EU of the 

European Parliament and of the Council amending Council Directive 2001/110/EC relating to 

honey). Therefore, honeydew honey has one botanical origin and two zoological origins 

(honeydew producers and honeybee) Fig 1.2. 

 

Fig 1. 2. The production of honeydew honey (Source: Gertrud Lohaus).  

Honeydew honeys are also called the forest honeys and can be classified according to their 

botanical origins: spruce, fir or pine honey. Compared to blossom honeys, honeydew honeys 

have a rather spicy, malty or woody taste and a darker color (Belitz et al.  2008). Honeydew 

honeys can be characterized because of their honeydew elements (HDE) such as fungal spores, 

soot elements, wax wool and tubes and crystalline mass. These are components of the natural 

surface of trees or leaves. They found their way to honeydew honey during the collection of 

honeydew (Kloft and Kunkel 1985). In addition, according to the European Legislation 

(Council Directive 2001/110/EC)  honeydew honeys must have electrical conductivity values 

≥ 0.8 mS cm-1, while flower honeys (with some exceptions) must have electrical conductivity 

values ≤ 0.8 mS cm-1. 
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1.5. Honey compounds 

Honey is a very concentrated and complex nutrition because it contains various components, 

such as carbohydrates, proteins, amino acids, inorganic ions, organic acids, aromatic and 

phenolic components, and vitamins. These components define the sensory properties of honey, 

such as taste, color, and odor. They also determine the physical and chemical properties of 

honey, like viscosity and pH. Furthermore, because many of these components are introduced 

to the honey from different botanical, zoological and geographical origins, they can be used to 

determine the various origins of honey (Bertoncelj et al.  2011; Pita-Calvo and Vázquez 2018).  

Carbohydrates are the quantitatively most important ingredients in honey and they are 

responsible for the high viscosity as well as for possible crystallization processes. The main 

component of honey are carbohydrates, they account for about 80 g per 100 g honey; therefore, 

honey has a good storage stability. The exact composition of a given honey is influenced by the 

botanical, geographical and zoological origin (Ruoff et al.  2007). However, the two main 

sugars are always glucose and fructose. Together, their content makes about 70 g per 100 g 

honey (da Silva et al.  2016, Pita-Calvo and Vázquez 2018). In addition, honey contains a large 

number of di- and trisaccharides like turanose, maltose, isomaltose, raffinose, melezitose and 

erlose. Table 1.2 summarizes the oligosaccharides that can be found in honey. Interestingly, the 

oligosaccharides content is much higher in honeydew honey than in blossom honey (Doner 

1977; Ruoff et al.  2007; and Bogdanov et al.  2008). The trisaccharide melezitose is considered 

to be a feature of honeydew honey (Doner 1977). As some honeydew producers feed on phloem 

sap, the conversion of sucrose to melezitose can occur because of the transglucosylase activity 

in their stomach. 

The second essential component of honey is water, the average content of which is between 16 

and 20%. The water content is critically important for the determination of the consistency and 

durability of the honey. The higher the water and the lower the sugar content, the shorter the 

durability of honey. 
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Table 1. 2. Honey oligosaccharides (Doner 1977) 

Common name Structure 
Disaccharides 

Trehalose 1-α-D- glucopyranosyl-1 α-glucopyranosid 

Nigrose O-α-D- glucopyranosyl- (1→ 3) -D- glucopyranose 

Maltose O-α-D- glucopyranosyl- (1→ 4) -D- glucopyranose 

Isomaltose O-α-D- glucopyranosyl- (1→ 6) -D- glucopyranose 

Melibiose O-α-D- galactopyranosyl- (1→ 6) -D- glucopyranose 

Sucrose α-D-glucopyranosyl- (1→ 2)-β-D-fructofuranoside 

Turanose O-α-D- glucopyranosyl- (1→ 3)-D-fructose 

Palatinose O-α-D- glucopyranosyl- (1→ 6)-D-fructose 

Maltulose O-β-D- glucopyranosyl- (1→ 4)-D-fructose 

Kojibiose α-D-glucopyranosyl-(1→2)-D-glucose 

Gentiobiose β-D-glucopyranosyl-(1→6)-D-glucopyranose 

Trisaccharides 

Maltotriose 
O-α-D- glucopyranosyl- (1→ 4) - O-α-D- glucopyranosyl- (1→ 4) -

D- glucopyranose 

Isomaltotriose 
O-α-D- glucopyranosyl- (1→ 4) - D- glucopyranosyl- (1→ 6) -D- 

glucopyranose 

Melezitose 
O-α-D- glucopyranosyl- (1→ 3)-O-β-D-fructofuranosyl- (2→1) α-D- 

glucopyranose 

1-Kestose 
O-α-D- glucopyranosyl- (1→ 2)-β-D-fructofuranosyl- (1→2) β-D- 

fructofuranoside 

Erlose 
O-α-D- glucopyranosyl- (1→ 4)- α-D-glucopyranosyl β-D-

fructofuranoside 

Raffinose 
α-D- galactopyranosyl- (1→ 6) -D- glucopyranose-(1→2) β-D- 

fructofuranoside 

Tetrasaccharide 

Stachyose 
α-D- galactopyranosyl- (1→ 6) - α-D- galactopyranosyl- (1→ 6) -D- 

glucopyranose-(1→2) β-D-fructofuranoside 
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Honey contains also 0.2-0.7% proteins, which mainly stem from the glandular secretions of 

bees (Kubota et al.  2004; Mohammed et al.  2012). Additionally, a smaller part comes from 

the nectar, the honeydew, and the pollen. Therefore, the protein content varies according to the 

botanical, geographical and zoological origin; thus, the concentration of different proteins is a 

possibly useful indicator for the geographical and botanical origin. In addition, the protein 

content can be influenced by several other factors, such as the origin and the condition of the 

bee colony or the season. Further, prolonged storage, heat and exposure to light can decrease 

the protein concentration (Mohammed et al.  2012). The main protein in honey is Major Royal 

Jelly Protein 1 (MRJP1), which makes up about 23% of the total protein content. Up to nine 

important royal jelly proteins from different botanical and geographical origins were 

determined in honey (Escuredo et al.  2013).  

Honey also contains enzymes, that are secreted mainly by bees from the sap and salivary glands, 

or from microorganisms (Kubota et al.  2004). Enzymes are sensitive to light, heat and other 

energy sources, and their activity is considered a quality parameter and indicator for the storage 

and processing of honey. The most important honey enzymes are invertase, disastase and 

glucose oxidase (Belitz et al.  2008). Invertase makes up about 50% of the proteins secreted 

from the glands, while disastase and glucose oxidase make up only about 2-3%. They all come 

from honeybees, although invertase can occur as a result of microbial activities (Kubota et al.  

2004). Further, three different types of the invertase α-glucosidase were determined in honey: 

α-glucosidase I, II and III, and more than 18 isomers of them were discovered in honeybees 

(Kubota et al.  2004). They split the α-glycosidic bond of sucrose and other oligosaccharides, 

releasing glucose and fructose. The disastase is capable of splitting starch and higher sugars. 

Glucose oxidase is a particularly important enzyme as it plays a significant role in honey 

maturation. The enzyme catalyzes the reaction of glucose to glucono-δ-lactone, which further 

reacts to gluconic acid and hydrogen peroxide. This is responsible for the low pH values in 

honey and, thus, associated with the antimicrobial properties of honey (Flanjak et al.  2016).  

Honey generally contains about 0.3 to 2.0 g kg-1 free amino acids, mainly proline (Cotte et al.  

2004). Amino acids found their way into the honey primarily from honeybee’s proteins in honey 

(Ball 2007). In addition, nectar, honeydew, and pollen are also involved in the determination of 

the amino acids contents; therefore, their proportions and contents can be influenced by 

botanical and zoological origins of the honey (Sing and Sing 1996). For example, amino acids 

were used to identify the geographical or botanical origin of honey, however, without highly 

conclusive results (Iglesias et al.  2004 and Cotte et al.  2004). 
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The total mineral content in honey varies dramatically between the different botanical and 

geographical origins of honey. The inorganic ion-content in honey is a result of various factors 

such as nature of the soil and plant species. Further, anthropogenic factors, like environmental 

pollution from industry and urban areas, also influence the composition of the metal ions in the 

honey (Fermo et al.  2013). Honeydew honey has high amounts of Potassium and the total 

mineral content is about 1%, while it is only 0.1-0.2% in flower honey (Castro-Vázquez et al.  

2006, Escuredo et al.  2012). Further, the mineral content was also used to distinguish honey 

on the basis of their botanical origins (Jovetić et al.  2017). 

The organic acids are present in the honey at 0.5% and contribute to its organoleptic and 

physico-chemical properties such as pH, acidity and electrical conductivity. Despite the higher 

acidity, the pH of honeydew honey is higher than that of nectar honey, which is due to the better 

buffering effect of the minerals and salts contained in honeydew honey (Mato et al.  2007). 

The different aromas and taste qualities can be used to differentiate between honeydew honey 

and nectar honey. Compared to the blossom honey, honeydew honey has a stronger, more 

powerful, malty-spicy aroma. The sensory analysis is a commonly used method to differentiate 

between different types of honey (BMEL 2004).  

The phenolic compounds are one of the largest group of plant secondary substances that protect 

the plant from biotic, abiotic and oxidative stress. Among them are phenolic carboxylic acids 

and flavonoids, which can be present in different concentrations. The most common compounds 

are aromatic and aryl-aliphatic carboxylic acids, as well as hydroxyl and metoxy derivatives of 

benzoic acid and cinnamic acid. Some studies consider that dark honeys, especially honeydew 

honey, tend to contain higher concentrations of phenolic compounds (Seraglio et al.  2016). 

1.6. Aims of this work 

This work is a part of the BoogIH project and aims to clarify the processing of phloem sap to 

honeydew by the honeydew producer and of honeydew to honey by the honeybee. Further, the 

occurrence and the proportion of melezitose in honeydew was investigated. Moreover, this 

work aims to identify distinguishing features for the botanical (host tree) and zoological 

(honeydew producers) origins of honeydew honeys and associate them with different honeydew 

producers and plant species. Thus, the variety of "honeydew honeys" can be extended and 

controlled by means of reliable declarations and by means of honeybee protection, which is of 

great economic importance, and ecological importance worldwide.  
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Honeydew samples from different honeydew producers feeding on different trees and phloem 

exudates and plants extraction from host plants were analyzed using many HPLC approaches. 

In particular, the sugars, amino acids, and inorganic ions were determined for each sample. 

Then various statistical methods were utilized to distinguish between honeydew samples and 

to classify samples according to their botanical or zoological origins.  

Then, enzyme activities of hole bodies of different honeydew producers were examined to 

investigate which factors (honeydew producers or temperature) contribute more to the 

production process of melezitose in honeydew. After that, the ability of honeybee’s abdomen 

enzymes to catalyze melezitose was examine and compared to sucrose. 

In the next step, sugar, amino acid and inorganic ion profiles of honeydew honeys from four 

botanical origins (fir, spruce, linden and pine) were established and statistical model was 

created to distinguish between them. In addition, fir and spruce honeys were also analyzed 

according to their zoological origins to examine if the zoological origins contribute more than 

the botanical origins of the honey component. 

To summarize, this work aims to clarify the following questions: 

1. Does the sugar, amino acid and inorganic ion content of honeydew differ significantly 

between aphid species and are they related to the phloem sap of host tree? Additionally, 

which factors contribute more to the components of honeydew (botanical or zoological 

origins)? 

2. Why is the melezitose content inconsistent in honeydew, and which factors can 

influence the presence/absence and the proportion of melezitose in honeydew? 

3. Are the honeybees able to digest melezitose effectively? 

4. Can fir, spruce, and pine honey be distinguish on the basis of sugar, amino acid, and 

inorganic ion contents? Can spruce and fir honey be classified according to their 

zoological origins? 

5. Can the origin (nectar or honeydew) of linden honey be identified on the basis of sugar, 

amino acid, and inorganic ion contents? 
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2. Material and Methods 
2.1. Chemicals and equipment 

A list of the chemicals used with sources of supply and laboratory equipment with 

manufacturer's details can be found in the appendix. The chemicals used in the tests were always 

purchased in the highest possible degree of purity. 

2.2. Plant material 

Within this work five different tree species were investigated. Fir (Abies alba), spruce (Picea 

abies), linden (Tilia sp.), beech (fagus sylvatica) and oak (Quercus robur). All trees were 

obtained as 3-year-old seedlings from the Selders (Haan, Germany). Trees were kept in a 

greenhouse. The roof was made of UV-transparent Plexiglas and the roof windows were open 

wide enough to prevent rain from entering and to accumulate heat. The plants were watered 

regularly. In addition, some plant samples were collected in five spruce (Picea abies) or fir 

(Abies alba) stands of Baden-Wuerttemberg (Germany). The geographic coordinates for the 

stands are 48˚ 66’41”N, 8˚32’54”E; 48˚48’19”N, 8˚37’13”E; 48˚31’56”N, 8˚47’04”E; 

48˚95’58”N, 8˚70’60”E; and 49˚00’40”N, 10˚07’07”E. The samples were collected in plastic 

tubes, immediately frozen and stored at -80˚C until analysis. 

2.2.1. Collecting of plants material 

Needles, leaves, bark and wood samples were collected in spring from all tree species. Samples 

were then immediately stored in plastic tubes at -80˚C until analysis. Further, on June when 

linden flowers are opened, nectar was gathered from the flower using a micropipette or by 

placing flowers in in a 0.5 ml plastic tube with a small hole at its bottom and centrifuge them 

at 5000 rpm for 20 min at 4˚C. Nectar samples were stored at -80˚C until analysis. 

2.2.2. Collection of phloem exudates 

Phloem exudate of bark from all tree species was collected in spring and early summer (between 

11 am and 3 pm). For each tree species, six samples of phloem exudate were prepared. roughly 

2 cm long pieces of bark were placed in a 0.5 ml plastic tube with a small hole at its bottom. 

This tube was placed inside a 2 ml plastic tube. The samples were then centrifuged at 5000 rpm 

for 20 min at 4˚C (Hijaz and Killiny 2014). The samples were stored -80˚C until analysis. 
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2.3. Honeydew material 

The honeydew samples were collected in five stands of Baden-Württemberg (Germany) 

between 2016 and 2020. Honeydew of Cinara pectinatae (Nördlinger, 1880), Cinara confinis 

(Koch, 1856), Cinara pilicornis (Hartig, 1841), Cinara piceae (Panzer, 1801), Physokermes 

piceae (Schrank, 1801), Physokermes hemicryphus (Dalman, 1826) and Eucallipterus tiliae 

(Linnaeus, 1758) was collected with micropipettes and pooled up to a volume of at least 1 μL 

per sample and immediately frozen and stored at -80˚C until analysis. All geographic 

coordinates for the collection stands of honeydew samples are summarize in table 2.1. 

Honeydew samples were diluted with water (1:100) and then analyzed via HPLC. 

2.4. Enzyme activity in whole-body homogenates of aphids 

Individuals of two aphid species were collected from the host plant using a paintbrush, namely 

the species C. pilicornis feeding on P. abies, C. pectinatae feeding on A. alba and E. tiliae 

feeding on T. cordata. After collection, 20 mg aphid-material was homogenized with the help 

of a pestle and 300 μL sucrose solution (10%, pH 7) was added to the homogenate. The 

homogenate-sucrose-mixture was then incubated at three different incubation temperatures 

namely 25°, 30° and 35° C. Of the differently incubated samples, aliquots (50 μL) were taken 

after 0, 30, 60, and 120 minutes and immediately put into 50 μL NaOH (200 mM) to inactivate 

the enzyme activities. Finally, the solution was centrifuged (13,000 x g, 30 sec) and the 

supernatants were taken for sugar analysis by HPLC. The experiment was performed at least 

three times for each sugar solution 

2.5. Enzyme activity in the abdomen of honeybees 

The enzyme activities were analyzed in the abdomen of A. mellifera. The abdomens of worker 

bees were seperated with a razor blade and homogenized in a cooled plastic tube with the help 

of a pestle. 300 μL sugar solution (20%, pH 7) were added to 200 mg abdomen homogenate 

and incubated at 37˚C. The sugar solutions were either 10% sucrose/10% melezitose, 20% 

melezitose or 20% sucrose. After 0, 30, 60, and 120 minutes, aliquots (50 μL) were taken and 

50 μL NaOH (200 mM) were added to inactivate any enzyme activities. The solution was then 

centrifuged (13,000 xg, 30 sec) and the supernatants were taken for sugar analysis by HPLC. 

The experiment was performed at least three times for each sugar solution. 
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Table 2. 1.The geographic coordinates for the collection stands of honeydew samples. 

Location GPS 

Hohenheim 48°42'33.1"N 9°12'40.3"E 

Göbrichen 48°57'313"N 008°42'4940"E 

Tiefenbronn 48°49'57"N 008°48'17"E 

Oberentersbach 48°53'29.274"N 009°50'51.021"E 

Eschach 48°53'35"N 009°50'20"E 

Alfdorf 48°53'29.274"N 009°50'51.021"E 

Fluorn-Winzeln 48°17'30.4"N 8°27'09.5"E 

Eisenbach 47°57'32.4"N 8°19'45.2"E 

Jagstzell 49°01'07.5"N 10°06'53.8"E 

Bartholomä 48°44'05.7"N 9°58'53.3"E 

Schömberg 48°49'12.2"N 8°45'56.8"E 

Langenbrand 48°48'19.1"N 8°37'13.3"E 

Schömberg 48°49'12.2"N 8°45'56.8"E 

Langenbrand 48.7022, 008.3624 

Bretzfeld 49.1849, 009.3779 

Vogt 47.7745, 009.7255 

Höchenschwand 47.6987, 008.2218 

Böhmenkirch 48.7087, 009.9426 

Michelfeld 49.0981, 009.6162 

Forbach 48.6571, 008.3301 

Raumünzach 48.6368, 008.3438 

Schwabbach 49.1819, 009.4080 

Pfedelbach 49.1460, 009.5238 

Birkach 48.7208, 009.2113 

Herrenwies 48.6556, 008.2907 

Hundsbach 48.6451, 008.2213 

Untersmatt 48.6138, 008.1918 

 

2.6. Honeydew honey material 

The Apicultural State Institute, University of Hohenheim (Stuttgart, Germany) obtained, 

between 2016 and 2019, fir, spruce and linden honey from selected beekeepers. The samples 

were marked by beekeepers and classified by the botanical and zoological origin, indicated by 
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the location where the beehives were positioned and the Apicultural State Institute, University 

of Hohenheim (Stuttgart, Germany), has verified the honeydew producers. All locations are 

showed in Table 2.2. In addition, Intertek Food Services GmbH, Bremen, obtained pine honey 

from Turkey. Furthermore, sensory evaluation was carried out to confirm the honeydew nature 

of all honey samples. All honeydew honey samples had electrical conductivity values ≥ 0.8 mS 

cm-1. Honeydew honey samples were diluted with water (1:40), centrifuged (5,000 rmp, 10 

min) to separate pollen and then analyzed using HPLC. 

Table 2. 2.The geographic coordinates for the collection stands of honeydew honey samples. 

Location GPS 

Bühlerzell  49°00'30.12"N 009°59'17.12"E 

Zwerenberg  48°37'40.4"N 008°35'47.0"E 

Schenkenzell  48°18'32.6"N 8°20'54.9"E 

Dautmergen-Teufental 48°14'46.9"N 8°44'36.9"E 

Buchenbach  47°57'04.2"N 8°00'49.0"E 

Freudenstadt  48°27'17.1"N 8°23'52.5"E 

Neubulach  48°39'22.4"N 8°42'45.4"E 

Eschach-Kemnaten 47°42'27.9"N 10°11'24.1"E 

Winzeln 48.2823, 008.4636 

Schömberg 48.7847, 8.6216 

Bretzfeld 49.1862, 9.3752 

Hechingen-Stetten   48°21'25.0"N 8°59'45.4"E 

Bodelshausen  48°24'33.05"N 8°58'24.46"E 

Seuversholz  48°57'31.7"N 11°10'02.0"E 

Dornhan  48°21'04.8"N 8°31'23.7"E 

Forbach Raumünzach 48.6641, 008.3247 

Albershausen  48.6893, 009.5506 

Forbach 48.6365, 008.3444 

Alfdorf 48.9022, 9.7094 

Fischerbach 48.1828, 8.0656 

Schenkenzell  48°42'47.6"N 9°56'26.8"E 

Schiltach  48°18'44.64"N 8°19'16.24"E 

Zell am Harmersbach  48°20'49.6"N 8°03'15.1"E 

Loßburg  48°24'40.5"N 8°25'46.2"E 

Fluorn-Winzeln  48°17'22.1"N 8°27'38.6"E 
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2.7. Extraction of sugar, amino acids and ions from plant 
tissue by chloroform-methanol extraction 

For the analysis of metabolites from plant tissue a chloroform-methanol extraction was 

performed. Transfer 200 mg of grained plant tissue (wood, park or leaf) into a centrifuge tube 

and note the exact weight of the sample, so that the concentrations determined by HPLC can be 

converted later into per gram fresh weight (FG/FW). Then 5 ml chloroform/methanol (1,5:3,5; 

v/v) was added and incubated from ice for 30 min. After the addition of 3 ml water, the mixture 

was vortexed and centrifuged (4500 rpm, 1 min). The aqueous upper phase is then transferred 

to a round bottom flask and the extraction step is repeated with 2 ml water. The aqueous phases 

from the extraction steps are dried in a rotary evaporator. The metabolites were then dissolved 

back in 1 ml water for leaves, park and wood. Then, the dissolved metabolites were collected 

by means of a 1 ml syringe and transferred through a syringe filter (nylon membrane with 0.2 

μm pore size) into a 1.5 ml reaction vessel. They were stored at -20°C until further use. 

2.8. Protein extraction for honey 

Protein concentration was determination according to Lowry, therefore, a sample preparation 

in the form of a protein extraction with methanol and chloroform was carried out. From the 

honeydew honey samples, 0.5 g were first dissolved in 1 mL ultrapure water. Due to the 

possiblility of losing proteins, pollen and other components were not removed by 

centrifugation. For the extraction 50 μL of this solution were mixed with 200 μL methanol, 

vortexed and centrifuged for 10 sec at 9000 x g, then 50 μL chloroform was added,vortexed 

and centrifuged for 10 sec at 9000g. lastly 150 μL ultrapure water were added, vortexed and 

centrifuged for 1 min at 9000g. To generate a protein pellet, the upper phase was discarded and 

the lower phase, which contained the proteins after extraction, was mixed with 150 μL 

methanol, vortexed and centrifuged at 9000g for 2 min. The protein pellet was freed from the 

liquid, dried at room temperature and then absorbed into 10 μL ultrapure water. The pellets 

were stored at -20°C until protein determination (Wessel 1984). 

Protein determination according to Lowry 

The protein determination is based on two reactions. In the first step, a biuret reaction is carried 

out with formation of a blue-violet complex, a reaction between the peptide bonds of the protein 

and the copper(II) ions of an alkaline copper(II) solution. The copper(II) ions are reduced to 

copper(I) ions in this reaction step. In the second step, the sample solution is mixed with a 
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Folin-Ciocalteu reagent consisting of sodium tungstate, sodium molybdate, hydrochloric and 

phosphoric acid. The blue-violet biuret complex reduces the yellow Folin-Ciocalteu dye 

(molybdenum and tungsten heteropoly acids). The reduced Folin reagent then forms a deep 

blue chelate complex with the copper(I) ions, which is used for the quantitative determination 

of the protein concentration by photometry at a wavelength of 750 nm (Lowry 1951). 

the protein determination was performed in 96 well plates with a triple determination. First, 40 

μL of the sample solution and 40 μL of the BSA calibration solutions were added to each well. 

To determine the blank value and thus the self-absorption of the 96-well plates and the reagent 

solutions, 40 μL ultrapure water was added to one chamber of each plate instead of the sample 

or the calibration solution. Next, 200 μL of solution D was added to each chamber, swiveled 

for 30 sec and incubated under cover for 10 min at room temperature. After the addition of 30 

μL of the Folin-Ciocalteu solution (2M) diluted 1:2, it was swiveled and covered for 30 min at 

room temperature. The absorbance measurement was performed directly afterwards at a 

wavelength of 750 nm.  

By photometric measurement of the BSA calibration series, the protein content of honeydew 

honey samples can be determined relative to the reference protein. The calibration line 

corresponds to a linear function, which results in the equation: 

(1)                                                 y=mx+b 

Adapted to the present provision, the following equation results. To determine the protein 

content of the sample, the equation is changed to c. 

(2)               

(3)                                              

With: E = absorbance 

 m = slope of the calibration line [1/(μg/ml)]. 

  b = y-intercept 

  c = concentration [(μg)/ml] 
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2.9. High-Performance-Liquid-Chromatography (HPLC) 
2.9.1. Analysis of sugars 

The determination of sugars from honey, honeydew, plant tissue extracts and phloem exudate 

was carried out using high-performance liquid chromatography (HPLC) according to 

Nadwodnik and Lohaus (2008). The extracts and phloem exudate were purified with syringe 

filters (0.2 μm pore size, Roth). All samples were diluted with H2O to such an extent that the 

concentration of sugars was within the linear detection range (50 -500 μm) of the pulse 

amperometric detector (cell: #5040, amperometer: Coulochem II, model 5200, ESA). The pulse 

settings are listed in Table 2.3. 

Table 2. 3.Setting for the pulse measurements on the amperometer  

Duration Mode Voltage 

500 ms Measurement 50 ms 

540 ms cleaning 700 ms 

540 ms Regeneration -800 ms 

 

The anion exchange column (precolumn: CarboPac PA10 Guard; main column: CarboPac 

PA10, Dionex) was loaded using an autosampler (2157, LKB Pharmacia), which injected the 

samples into the column's eluent supply (100 mM NaOH) via a valve. A two-piston high 

performance pump was used to achieve flow rate of 0.8 ml/min at approx. 130 bar (LC-9A; 

Shimadzu company). Separation was performed by the anion binding capacity of the stationary 

phase and the number of negative charges on the sugar molecules in the mobile phase. For each 

sample run, a standard curve for the determination of the concentration was generated with 

sugar concentrations of 50, 100, 250 and 500 μM. The collected chromatographic data were 

analyzed on a computer with the software PeakNet (version 5.1, Fa. Dionex). 

2.9.2. Analysis of free amino acids 

Free amino acids in honey, honeydew, extracted plant tissue and ploem exudate were analysed 

by HPLC according to Lohaus and Schwerdtfeger (2014). The HPLC system used is a Thermo 

Fisher Scientific Dionex Ultimate 3000 system. For amino acids with a primary amino group a 

precolumn derivatization with o-phthaldialdehyde (OPA) was used (Table 2.4). However, no 

amino acid with a secondary amino group (e.g. proline) could be detected with this method. 

Therefore, a precolumn derivatisation with fluorenylmethyloxycarbonyl chloride (FMOC-CL) 
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instead of OPA was used for the detection of proline (Table 4.5). In addition, honey samples 

were diluted with 100mM NaOH soltion instead of water to adjust the PH near to 10; thus, the 

derivatisation with fluorenylmethyloxycarbonyl chloride is optimized.  The separation of the 

derivatives was performed using a reversed-phase chromatography column (precolumn: 

LiChrospher 100 RP-18 endcapped 5 μm LichroCART 4-4; main column: Superspher 100 RP-

18 endcapped LichroCART 125-4, Merck) with an acetonitrile gradient (Table 2.5) at a flow 

rate of 0.9 ml/min. 

Table 2. 4.Solution for pre-column derivatization 

Solution Substance Amount 

OPA-stock solution OPA 5-8 mg 

 Methanol 1 ml 

 potassium borate (1 M, pH 10,4) 125μl 

 ß-Mercaptoethanol  12,5μl 

OPA-work solution potassium borate (1 M, pH 10,4) 1 ml 

 OPA-stock solution 0,5ml 

FMOC-work 

solution 

FMOC-CL 3,8 mg 

 Aceton 5 ml 

 

Table 2. 5.Eluent for the analysis of free amino acids 

Solution Substance Amount 

HPLC-solution Ultrapure water 2,5 L 

 Phosphoric acid 3 ml 

 EDTA 1,25 g 

 PH 7,06-7,1 adjusted with (25%NaOH)  

Eluent A HPLC-solution 95% 

 Acetonitrile 5% 

Eluent B HPLC-solution 50% 

 Acetonitrile 50% 

Eluent C Acetonitrile 70% 

 Ultrapure water 30% 
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After separation, the derivatives were detected by fluorescence (FLD-3100, Dionex). For 

derivatisation, detection was performed at an excitation of 330 nm and an emission of 408 nm, 

whereas for derivatization with FMOC-Cl an excitation of 265 nm and an emission of 305 nm 

was used. The external calibration was performed with amino acid standards measured in 

parallel. The collected chromatographic data were evaluated with the integration program 

Chromeleon (Version 7.2, Fa. Dionex). 

2.9.3. Analysis of inorganic ions  

The analysis of inorganic anions and cations was performed separately by HPLC according to 

Lohaus et al.  (2001). An anion exchange column (IonPacTM AS11 4 x 250 mm, Dionex) was 

used to separate inorganic anions by isocratic elution (20 mM Na2CO3). Inorganic cations could 

be separated with a cation exchange column (CS 12A, 4 x 250 mm, Dionex) by isocratic elution 

(20 mM H2SO4). Sensitivity was increased by using a suppressor (ASRS Ultra II 4mm, Dionex), 

which increases the peak intensity and reduces baseline noise by decreasing the ground 

conductivity of the eluent. With an electronic conductivity detector the inorganic ions and 

organic acids could be quantified. Standards of the ions were determined in parallel for external 

calibration. The collected chromatographic data were evaluated with the integration program 

Peaknet (Version 5.1, Fa. Dionex). 

2.10. Statistic 
2.10.1. Analyses of variance 

When comparing mean values of two groups, student’s t-tests were carried out for mean values 

from five or more samples, because in these cases it is possible to test for normality and 

homogeneity of the data. In cases of smaller numbers of samples (n<5) a nonparametric test 

(Mann Whitney U) was carried out. When comparing mean values of more than two groups, 

analyses of variance (ANOVA) were performed. Skewness and kurtosis were calculated to 

capture the distribution of the dataset; normal distribution was assumed if skewness values were 

less than 2 and kurtosis values were less than 7 (West et al.  1995). Moreover, Levene’s tests 

were applied to test for homogeneity of variances for the data. When data conformed to the 

normality assumption but failed on homogeneity of variances, analysis of variance was 

performed using the Welch’s test followed by post-hoc test (Games-Howell test). For the cases 

where both normality and homogeneity assumptions were confirmed, a one-way ANOVA was 

performed. Subsequently, post-hoc tests (Tukey’s HSD) were carried out (p-value < 0.05). 
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2.10.2. Non-metric multidimensional scaling (NMDS) 

NMDS is used to visualize the similarity between samples in datasets by reducing its number 

of dimensions to a two- or three-dimensional. It considers a non-parametric monotonic 

relationship between the distance in the sample-sample matrix and the Euclidean distances 

between items. However, unlike the multidimensional scaling (MDS), it also takes into account 

the location of each sample in the low-dimensional space (Mead 1992). 

First, the number of dimensions (N) is determined and the distance metric is set. Then, a 

distance matrix between samples is calculated. After that, samples are distributed in the 

dimensions according to the initial configuration and the stress value is calculated, according 

to this distribution. Stress is the mismatch between the rank order of distances in the data and 

the rank order of distances in the ordination. In order to decrease the stress, samples are moved 

slightly. The movement of samples is repeated until the stress reachs the lowest value. 

2.10.3. Principle component analysis (PCA) 

Principal Component Analysis (PCA) is a classical ordination method for raw data based on 

eigenvalue decomposition of a covariance of the data set.  It creates components that summarize 

the original information of the data in a reduced space. More accurately, the first step is to 

calculate a covariance matrix of all possible pairs of the samples. This matrix summarizes the 

correlations between all the possible pairs of variables. Then, the eigenvectors and eigenvalues 

of the covariance matrix is computed to identify the principal components. Principal 

components represent the direction of the data that explain a maximal amount of variance. In 

addition, the number of principal components resembles the number of dimensions of the data 

set. Lastly, the data is reoriented to the axes that represents the principal components and then 

plotted against the first two or three components. 

2.10.4. Permutational analysis of variance (PERMANOVA) 

Multivariate analyses like NMDS or PCA demonstrate visual separations of samples; however, 

further tests, such as permutational analysis of variance (PERMANOVA, Anderson 2001), are 

required to test whether the separations is significant,. This is a non-parametric multivariate test 

that can be used to test for the significance between groups. First, a matrix of distances between 

each pair of samples is calculated. Then, a pseudo F-ratio based on the sum of squares between 

groups is computed. Then, multiple permutations of the data are set by shuffling the samples 
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between groups and a permutation F ratio is calculated for each permutation.  Finally, a P-value 

is calculated by: 

 

Where Fp is the permutation F and F is the pseudo-F. The P- value is low if pseudo F is almost 

always smaller than permutations F.  

2.10.5. Permutational Analysis of Multivariate Dispersions 
(PERMDISP) 

Permutational analyses of multivariate dispersions (PERMDISP, Anderson 2006) is an analogy 

to the Levene’s test. In other words, it is a test for homogeneity of multivariate variation. 

Significant results in PERMANOVA are primarily caused by dispersion in the data set. 

However, in case of heterogeneity of the data, a significant PERMANOVA’s results can occur 

due to location effect of the data set (Anderson et al.  2008). Therefore, Permutational analyses 

of multivariate dispersions (PERMDISP) is performed to test for the homogeneity of 

multivariate dispersions and to distinguish between location and dispersion effects in case of 

significant PERMANOVA values (Anderson 2006). 

2.10.6. Redundancy analysis (RDA) 

Redundancy analysis (RDA) is a method to summarize the variations in a set of response 

variables that can be explained by a set of explanatory variables. It decomposes the explained 

and unexplained variation from the data and interprets the significant effects in a single 

ordination (Herve´ et al.  2018). First, models should be created where data are identified 

according to one or more controlled variable. Then, multivariate linear regression (MLR) 

between samples and controlled variable is fit. More precisely, a bi-multivariate redundancy 

statistic R2 (Miller and Farr 1971 and Peres-Neto et al.  2006) was calculated, which describes 

the total percentage of the variation explained by the controlled variable. In addition, 

permutation F-test based on R2 was carried out to investigate the significance of the controlled 

variable (Legendre and Legendre 2012). Further, in case of more than one controlled variable, 

pairwise composition permutation F-test was performed to test the significance of differences 

between each controlled variable. 
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 After that, two PCAs were performed. The ‘constrained PCA’ is applied on the fitted values of 

the multivariate linear regression. This PCA summarizes the variation of data that can be 

explained by the controlled variables. The second PCA, ‘unconstrained PCA’ is applied on the 

residuals of the multivariate linear regression, thus it explains the variation in the data that 

cannot be related to the controlled variables. 

2.11. Bioinformatics 

Various programs and software packages were utilized for the computer-based work. Table 5 

summarized them. 

Table 2. 6. A list of used software 

Name Version Function Resource 
Programs  

Peaknet 5.1 Chromatography Data 

Software 

Dionex  

 

Chromeleon 7.2 Chromatography Data 

Software 

Dionex  

 

R 3.5.1 statistic www.r-project.org 

SPSS 24.0 statistic IBM, Cooperation 

R packages 

Vegan  metaMDS 

betadisper 

Adonis 

rda 

https://CRAN.R-

project.org/package=vegan 

RVAideMomoire  MVA.synt 

MVA.anova 

pairwise.factorfit MVA.plot 

https://CRAN.R-

project.org/package= 

RVAideMomoire 
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3. Results 

 

The results are presented in the following structure: 

 

Section I: Honeydew composition of six different hemipteran species feeding on 

Abies alba and Picea abies 

 

Section II: Effects of different temperatures on melezitose production in aphid 

species 

 

Section III: The ability of honeybee A. mellifera to digest melezitose 

 

Section IV: Honeydew honey profiling of fir, spruce and pine honey 

 

Section V: Nectar, honeydew and honey profiling of lime tree Tilia sp. 
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3.1. Section I: Honeydew composition of six different 
hemipteran species feeding on Abies alba and Picea abies 

 

To investigate if the hemipteran species or the host plant influence the honeydew composition, 

honeydew samples from many hemipteran species feeding on A. alba and P. abies were 

collected and analyzed.  Further, phloem exudates from host plants were also obtained and 

analyzed. Then, all honeydew samples and phloem exudates values were compared and 

statistically verified. The results were published in the article “Sugar, amino acid and inorganic 

ion profiling of the honeydew from different hemipteran species feeding on Abies alba and 

Picea abies” (PLoS ONE 15(1): e0228171. https://doi.org/10.1371/journal.pone.0228171). 

In this paper, honeydew samples from six different hemipteran species were collected from five 

stands of Baden-Wuerttemberg (Germany). In particular, honeydew droplets directly from two 

Coccidae species (Physokermes piceae and Physokermes hemicryphus) and from two 

Lachninae species (Cinara pilicornis and Cinara piceae) located on spruce (Picea abies (L.) 

H. Karst.) and also from two Lachninae species (Cinara pectinatae and Cinara confinis) located 

on fir (Abies alba Mill.) were gathered and the sugars, amino acids and inorganic ions profiles 

were determined via various HPLC approaches. Further, sugars, amino acids and inorganic ions 

composition of phloem exudates were also determined and compared to honeydew samples. 

Then, non metric multideimension scaling (NMDS) followed by Permutational Multivariate 

Analysis of Variance (PERMANOVA) and Permutational Analysis of Multivariate Dispersions 

(PERMDISP) was performed to identify the relative importance of the variables hemipteran 

species and tree species on the honeydew composition. Lastly, the enzyme activity in whole-

body homogenates of two aphid species were tested and statistically verified. 

Phloem exudates contain mainly sucrose, but honeydew of all species contain different 

proportions of glucose, fructose, sucrose, trehalose, melezitose, erlose and further 

Oligosaccharides. In addition, the proportion of sugars differ significantly among aphids 

species hosting two different plant species or the same plant species. Additionally, visual 

separation in NMDS plot of different groups of honeydew sugar profiles were obtained, and the 

significance of this separation is verified by further statistic tests. As conclusion, honeydew 

sugars proportions is significantly related to hemipteran species more than host plants.  

The total contents of amino acids in the honeydew were much lower than the sugar content. In 

addition, all amino acids were found in phloem exudates and honeydew samples. Further, the 
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proportion of amino acids in phloem exudates and honeydew is not the same. However, 

glutamine and glutamate were predominant amino acids in the honeydew of all six hemipteran 

species and also in the phloem exudates of both tree species. Finally, no visual separation in 

NMDS plot of different groups of honeydew amino acids profiles was obtained and no 

significant differences. 

The total contents of inorganic ions in the honeydew were much lower than the sugar content. 

Potassium was the dominant inorganic ion in all honeydew samples and also in the phloem 

exudate. Further, Physokermes sp. seems to have higher phosphate proportions than Cinara sp. 

The whole-body homogenates of aphids experiment shows that sucrose is hydrolyzed and 

oligosaccharides are formed. Moreover, honeydew producers mainly influence the type of the 

produced oligosaccharides.  
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Abstract 
Several hemipteran species feed on the phloem sap of plants and produce large amounts 

of honeydew that is collected by bees to produce honeydew honey. Therefore, it is important to 

know whether it is predominantly the hemipteran species or the host plant to influence the 

honeydew composition. This is particularly relevant for those botanical and zoological species 

from which the majority of honeydew honey originates. To investigate this issue, honeydew 

from two Cinara species located on Abies alba as well as from two Cinara and two 

Physokermes species located on Picea abies were collected. Phloem exudates of the host plants 

were also analyzed. Honeydew of all species contained different proportions of hexoses, 

sucrose, melezitose, erlose, and further di- and trisaccharides, whereas the phloem exudates of 

the host trees contained no trisaccharides. Moreover, the proportions of sugars differed 

significantly between hemipteran species feeding on the same tree species. Sucrose hydrolysis 

and oligosaccharide formation was shown in whole-body homogenates of aphids. The type of 

the produced oligosaccharides in the aphid-extracts correlated with the oligosaccharide 

composition in the honeydew of the different aphid species. The total contents of amino acids 

and inorganic ions in the honeydew were much lower than the sugar content. Glutamine and 

glutamate were predominant amino acids in the honeydew of all six hemipteran species and 

also in the phloem exudates of both tree species. Potassium was the dominant inorganic ion in 

all honeydew samples and also in the phloem exudate. Statistical analyses reveal that the sugar 

composition of honeydew is determined more by the hemipteran species than by the host plant. 

Consequently, it can be assumed that the sugar composition of honeydew honey is also more 

influenced by the hemipteran species than by the host tree.  
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Introduction 
Many insects of the order Hemiptera, including most aphids and coccids, feed on the 

phloem sap of their respective host plants [1]. Phloem sap is generally dominated by sucrose, 

with concentrations ranging from 0.7 to 1.5 M [2,3,4]. Some plant species also translocate 

oligosaccharides of the raffinose family, such as members of the Oleaceae, or sugar alcohols, 

such as members of the Rosaceae, in addition to sucrose [5,6]. 

Phloem sap also contains amino acids with a concentration of 50 to 200 mM. In several 

plant species, especially GLU, GLN, ASP, and ASN are dominant amino acids [3,4,7,8]. For 

several insects, nine amino acids are essential (HIS, ILE, LEU, LYS, MET, PHE, THR, TRP, 

VAL) [1]. Although all amino acids were found in the phloem sap [3,9], it is not an ideal diet 

for insects because of its high osmotic pressure, the low ratio of amino acids compared to 

sugars, and the ratio of essential-to-non-essential amino acid, which is lower in phloem sap than 

in the insect protein [1]. Therefore, phloem feeders ingest phloem sugars in quantities exceeding 

their carbon requirement to fulfil their metabolic need, and high concentrations of sugars in 

modified composition are egested as honeydew [10,11]. 

Honeydew is mainly composed of sugars, but it also contains inorganic ions, amino 

acids, proteins and other compounds [12,13,14,15]. The honeydew composition varies between 

different insect species; it can also be influenced by different host plant species, seasonal 

changes or different environmental conditions [9,16,17]. In addition, the honeydew 

composition may be influenced by variation in ant-aphid interaction [18]. Moreover, there is a 

considerable variation in the composition within samples from a particular aphid species [18].  

Different monosaccharides (glucose, fructose), disaccharides (e.g. sucrose, trehalose, 

maltose) and trisaccharides (e.g. melezitose, erlose, raffinose) were found in honeydew 

[15,17,19,20] but not in the phloem sap of several tree species, where only sucrose was present 

[2,21]. In willow trees, for example, sucrose was the only sugar found in the phloem sap, 
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whereas the honeydew of a phloem feeding willow aphid (Tuberolachnus salignus) contained 

different mono-, di-, and trisaccharides [21]. Moreover, large variations of the sugar 

composition in honeydew of three aphid species feeding on the same tree species (Populus 

tremula) were observed [18]. 

For the osmotic regulation of the phloem feeding insects, it is important that they form 

oligosaccharides from the sucrose ingested with the phloem sap [10,22,23]. A positive 

relationship between the dietary sucrose concentration and the oligosaccharide content in the 

honeydew was shown for different aphid species [10,22,23]. The oligosaccharides are probably 

synthesized by several enzymes in the gut of the aphids [10,24,25].  

Associated bacteria may also be involved in the nutrient metabolism in the insects [1]. 

One of the best-studied symbioses of this type are the symbioses of Buchnera and aphids, where 

the microorganisms are involved in the provision of essential amino acids for aphids 

[26,27,28,29]. In the case of oligosaccharides, the aphids rather than the associated microbiota 

mediate the synthesis of these sugars [10]. 

When floral nectar is scare, bees often collect honeydew that has fallen onto plants. 

Therefore, it is important for the honey production industry to know its composition. The 

production of large amounts of honeydew is known for insects feeding on conifers, i.e. fir, 

spruce, or pine and also on deciduous trees, such as oak or lime [30]. Honeydew honey is also 

called forest, spruce or fir honey. Forest honey contains more di- and oligosaccharides than 

flower honey [31]. Nottbohm and Lucius [32] found melezitose in honeydew honey, of which 

Hudson and Sherwood [33] already knew that it was responsible for the crystallization of honey 

in the combs. This can have negative effects on the honey production process. There are some, 

mainly older, publications about the proportion of melezitose in honeydew of hemipteran 

feeding aphids on conifers, but the data are partly inconsistent [34]. Liebig [20] reports a share 

of 15% melezitose of the total sugar content in honeydew of Cinara pectinatae feeding on Abies 



 

33 
 

alba, whereas in other studies, no melezitose was detected [35]. The quality of honey depends, 

in addition to several other factors, also on the quantity of melezitose and other 

oligosaccharides. Therefore, it is important to know which insect species or plant species could 

be responsible for high melezitose contents in honeydew. This is particularly important for 

hemipteran species and conifer species which are associated with honeydew honey. 

The aim of this study was to determine the proportions of melezitose and other sugars, 

as well as amino acids and further ions in the honeydew of different hemipteran species in order 

to examine whether the honeydew compositions differ among hemipteran species and/or among 

conifer species. Therefore, we collected honeydew droplets directly from two Coccidae species 

(Physokermes piceae and Physokermes hemicryphus) and from two Lachninae species (Cinara 

pilicornis and Cinara piceae) located on spruce (Picea abies (L.) H. Kast.) and also from two 

Lachninae species (Cinara pectinatae and Cinara confinis) located on fir (Abies alba Mill.). 

The analyzed hemipteran species are important producers of honeydew on conifers in Germany 

and other countries of Central Europe [30]. We determined the sugars, amino acids, and 

inorganic ions in the honeydew and examined the formation of oligosaccharides in different 

Cinara species. The results were compared to the corresponding proportions of the different 

compounds in phloem exudates of the tree species. 

Material and Methods 

Plant species, hemipteran species, and collection of honeydew 
The honeydew and plant samples were collected in five spruce (Picea abies) or fir 

(Abies alba) stands of Baden-Wuerttemberg (Germany). The geographic coordinates for the 

stands are 48°66’41’’N, 8°32’54’’E; 48°48’19’’N, 8°37’13’’E; 48°31’56’’N, 8°47’04’’E; 

48°95’58’’N, 8°70’60’’E; and 49°00’40’’N, 10°07’07’’E. Honeydew of Cinara pectinatae 

(Nördlinger, 1880) and Cinara confinis (Koch, 1856) located on A. alba (Mill.) and of Cinara 

pilicornis (Hartig, 1841), Cinara piceae (Panzer, 1801), Physokermes piceae (Schrank, 1801) 
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and Physokermes hemicryphus (Dalman, 1826) located on P. abies ((L.) H. Kast.) was 

collected. The taller trees were about 20-30 years old. Honeydew was collected from the lower 

or overhanging branches. Field experiments were carried out from May to July 2016 and also 

2017. To minimize diurnal influences, all samples were collected at mid-day (between 11 am 

and 3 pm). For each species, at least 15 honeydew samples were collected from 15 colonies 

feeding on different tree individuals. The honeydew from different individuals in one colony 

was directly collected with micropipettes and pooled up to a volume of at least 1 μL per sample. 

All droplets were still liquid,  their age, meaning the time of release by the insect, however, was 

unknown. The samples were collected in plastic tubes, immediately frozen and stored at -80°C 

until analysis. 

Collection of phloem exudates 
Phloem exudate of bark from A. alba and P. abies was collected parallel to the 

honeydew sampling from May to July 2016 and also 2017 at mid-day (between 11 am and 3 

pm). For each tree species, six samples of phloem exudate were prepared. According to the 

method of Hijaz and Killiny [36], roughly 2 cm long pieces of bark were placed in a 0.5 ml 

plastic tube with a small hole at its bottom. This tube was placed inside a 2 ml plastic tube. The 

samples were then centrifuged at 5000 rpm for 20 min at 4°C. This exudate consists mainly of 

phloem sap, but there may also be small amounts of xylem and other cell sap from the wound 

surface during the cutting process. The samples were stored -80°C until analysis. 

Ethics statement 
As per the authors’ institutions’ guidelines as well as applicable national regulations, no 

ethics approval was required or obtained for the present study. This study was carried out in 

spruce (P. abies) or fir (A. alba) stands in Baden-Wuerttemberg (Germany). No specific 

permissions were required for these locations. We collected honeydew from aphids and scale 
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insects, as well as material of P. abies and A. alba. Neither the insects nor the plants are 

protected by German law and no endangered or protected species were involved in this study. 

HPLC analyses of sugars, amino acids, and inorganic ions 
Sugars, amino acids, and inorganic ions were analyzed via different HPLC systems. 

Honeydew and phloem exudates were measured directly. Sugar standards (0-500 μM), amino 

acid standards (0-20 μM), and standards for inorganic ions (0-1000 μM) were measured in 

parallel. A calibration curve was created for each sugar, amino acid, or inorganic ion. The peak 

areas in the measured chromatograms were evaluated with an integration program (Chromeleon 

7.2, Dionex Corp, Sunnyvale, CA, United States). The concentrations of sugars, amino acids, 

or inorganic ions were determined with the help of the calibration curves for each of the 

different substances. In order to make the results of the different hemipteran species or 

biological origin (honeydew or phloem exudate) comparable, the proportion of each sugar, 

amino acid or ions of the total sugar, as well as the amino acid or ion concentration was 

calculated. 

Sugar analyses 
The sugars in honeydew and bark exudates were analyzed according to Lohaus and 

Schwerdtfeger [8]. Therefore, an anion exchange column and pulse amperometric detection 

were used. Standards (glucose, fructose, sucrose, trehalose, melibiose, maltose, isomaltose, 

maltulose, isomaltulose, melezitose, erlose, raffinose, 1-kestose, isomaltotriose, maltotriose, 

nidrose, stachyose) were measured in parallel. The identification of each sugar was based on 

the comparison of the retention time of the different peaks with that of the standards. 

Furthermore, the obtained results were checked regularly with the standard addition method. 

The co-elution of sugars in the samples with known standards confirmed our assumption. Long-

chain oligosaccharides (degree of polymerization (DP) ≥ 5) were analyzed with the same 

system, with the difference that the anion exchange column was eluted isocratically with 200 
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mM NaOH instead of 80 mM NaOH [37]. For the non-availability of higher oligosaccharide 

standards, long-chain oligosaccharides were quantified against verbascose (DP5) standard and 

presented as verbascose equivalents. 

 

Amino acid analyses 
The analysis of free amino acids was performed according to Göttlinger et al.  [38]. 

Amino acids with a primary amino group were processed by precolumn derivatization with o-

phtaldialdehyde, amino acids with a secondary amino group (e.g. proline) with 

fluorenylmethyloxycarbonyl. The derivates were detected by fluorescence.  

 

Analyses of inorganic ions 
Anions and cations were analyzed separately according to Göttlinger et al.  [38]. The 

ions were detected by their electronic conductivity. 

 

Enzyme activity in whole-body homogenates of aphids 
The enzyme activities were analyzed in C. pectinatae feeding on A. alba and C. 

pilicornis feeding on P. abies. About five C. pectinatae-individuals and about ten C. pilicornis-

individuals, were collected from the host plant using a paintbrush. After collection, they were 

homogenized in a cooled plastic tube with the help of a pestle. 300 μL sucrose solution (10%, 

pH 7) were added to 20 mg aphid homogenate and incubated at 30°C. After 0, 30, 60, and 120 

minutes, aliquots (50 μL) were taken and 50 μL NaOH (200 mM) were added to inactivate any 

enzymes or microbe-activity. The solution was then centrifuged (13,000 xg, 30 sec) and the 

supernatants were taken for sugar analysis by HPLC (as described above). The experiment was 

performed at least three times for each aphid species.  
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Statistical analyses 
Data for sugar, amino acids, or ion proportions in honeydew are shown as means (± 

SD). The means of each of the sugars, amino acids, or ions in the honeydew of the six 

hemipteran species were compared separately to check for significant differences. Skewness 

and kurtosis were calculated to capture the distribution of the dataset; normal distribution was 

assumed if skewness values were less than 2 and kurtosis values were less than 7 [39]. 

Moreover, Levene’s tests were applied to test for homogeneity of variances for the data of each 

metabolite or ion. When data conformed to the normality assumption but failed on homogeneity 

of variances, analysis of variance was performed using the Welch’s test followed by post-hoc 

test (Games-Howell test). If both normality and homogeneity assumptions were confirmed, a 

one-way ANOVA was performed. Subsequently, post-hoc tests (Tukey’s HSD) were carried 

out (p-value ≤ 0.05). 

For the enzyme activities in the Cinara species a nonparametric test (Mann Whitney U) 

was carried out to test for significant differences in the mean values. 

To conduct a non-metric multidimensional scaling (NMDS) for sugar, amino acid, and 

ion proportions of honeydew samples for all hemipteran species, data were reconstructed into 

similarity matrices using the Euclidean distance [40]. They were analyzed with the help of 

NMDS ordiplots. The fit of the ordination compared to the original sample ranking was 

assessed using the stress function. The ordination represents the data when the stress value is 

less than 0.2 [41]. The analysis was performed using the ‘Vegan’ package with the metaMDS 

routine of the program “R” [42]. 

Permutational Multivariate Analysis of Variance (PERMANOVA, [43]) was performed 

to identify the relative importance of the variables hemipteran species and tree species on the 

honeydew composition. Furthermore, Permutational Analysis of Multivariate Dispersions 
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(PERMDISP, [44]) was performed to test the homogeneity of multivariate dispersions and to 

distinguish between location and dispersion effects in case of significant PERMANOVA 

values. Both analyses are based on Euclidean distance measures, they were performed using 

the ‘Vegan’ package with the betadisper routine for PERMDISP and adonis routine for 

PERMANOVA of the program “R”. For the PERMANOVA, 999 permutations were applied. 

All statistical analyses were performed using R (version 3.5.1, www.r-project.org) and 

SPSS (version 24.0, IBM, Cooperation). 

Results 

Sugars, amino acids, and inorganic ions in honeydew 
Honeydew, produced by C. pectinatae and C. confinis on A. alba and by C. piceae, C. 

pilicornis, P. piceae and P. hemicryphus located on P. abies were analyzed for sugars, amino 

acids, and inorganic ions. The monosaccharides glucose and fructose, as well as the 

disaccharide sucrose, were found in all samples (Table 1). In general, the proportion of fructose 

was higher than the proportion of glucose. The trisaccharides, melezitose and erlose represented 

also major components of honeydew. There were, however, significant differences between the 

hemipteran species (Fig 1). Honeydew, produced by C. piceae located on spruce, revealed the 

highest proportion of melezitose (mean ± SD; 48 ± 13 %), followed by C. pilicornis (mean ± 

SD; 36 ± 8 %), whereas honeydew produced by P. piceae and P. hemicryphus located on spruce 

and by the Lachninae species C. pectinatae and C. confinis on fir showed much lower 

proportions of melezitose. A reverse picture emerges when analyzing the proportion of erlose: 

high proportions of erlose were found in honeydew of C. pectinatae and C. confinis, medium 

in P. piceae and P. hemicryphus, and low in C. pilicornis and C. piceae (Fig 1). 
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Table 1. Sugar composition of the honeydew of six hemipteran species feeding on Abies 
alba or Picea abies.  

 Abies alba Picea abies 

Sugar [%] Cinara 

pectinatae 

Cinara 

confinis 

Cinara 

pilicornis 

Cinara 

piceae 

Physokermes 

piceae 

Physokermes 

hemicryphus 

Glucose (glu) 12 ± 8a 6 ± 6a,b 7 ± 10a,b 4 ± 3b 10 ± 4a,b 14 ± 10a 

Fructose (fru) 13 ± 4a 49 ± 12d 25 ± 6b,c 34 ± 8c 30 ± 10c 19 ± 12a,b 

Sucrose (suc) 51 ± 13a 24 ± 16b,c 30 ± 13b 11 ± 8c 35 ± 16a,b 48 ± 22a 

Trehalose (tre) 2 ± 2a,b 2 ± 1a,b 0 ± 0a 2 ± 1b 3 ± 2b 2 ± 3b 

Maltose (mal) 0 ± 0a 2 ± 3a,b 1 ± 2a 0 ± 0a 0 ± 0a 4 ± 4b 

Further 

disaccharides (fds) 
0 ± 0a,b 1 ± 1b 0 ± 0a 0 ± 0a 0 ± 0a,b 0 ± 0a,b 

Melezitose (mel) 2 ± 2a 2 ± 2a 36 ± 8c 48 ± 13d 13 ± 9b 2 ± 5a 

Erlose (erl) 15 ± 4a 14 ± 7a 1 ± 2c 1 ± 2c 7 ± 4b,c 9 ± 10a,b 

1-Kestose* (kes) 4 ± 5a 0 ± 0b 0 ± 0b 0 ± 0b 1 ± 2b 2 ± 2a,b 

Further 

trisaccharides (fts) 
1 ± 1a 0 ± 0b 0 ± 0b 0 ± 0b 0 ± 0b 0 ± 0b 

Further 

oligosaccharides  
≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 

All values are mean proportions (%) of n = 15 independent measurements ± SD. 
Different letters represent significant differences between the sugar proportion in honeydew of 
the different hemipteran species. 
Further disaccharides: isomaltose, isomaltulose, maltulose, melibiose, and turanose. 
Further trisaccharides: isomaltotriose, maltotriose, and raffinose. *peak of kestose was not 
completely separated from nigerose and stachyose peak. 
Further oligosaccharides: oligosaccharides with a degree of polymerization ≥ 4. 

 

The disaccharides trehalose and maltose occurred in minor proportions in most 

honeydew samples (Table 1). Several honeydew samples of C. pectinatae, P. piceae and P. 

hemicryphus also showed a minor peak in the chromatogram with the retention time of 1-

kestose. However, this peak could also represent nigerose and stachyose, because they could 

not be separated in the chromatogram. Melibiose, isomaltose, turanose, maltulose, 

isomaltulose, maltotriose, isomaltotriose, raffinose were found not at all or only in single 
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samples, but these sugars never constituted more than 1–2% of the total sugar content. The 

proportions of long-chain oligosaccharides (DP ≥ 5) were below 1% in all honeydew samples. 

 

Fig 1. Melezitose and erlose proportion in the honeydew of six hemipteran species feeding 

on A. alba and P. abies. 

All values are mean proportions (%) of n=15 independent measurements ± SD. Data were taken 

from Table 1. Different letters represent significant differences in melezitose and erlose 

proportion between different hemipteran species (Tukey’s HSD; p < 0.05).  

Despite the very low amino acids concentration in honeydew, all proteinogenic amino acids 

and some further amino compounds could be detected (Table 2). The main amino acids were 

GLN, GLU, PRO, and the essential amino acid HIS. The proportions of the other essential 

amino acids were low. No significant differences could be detected for most of the amino acids 

in the honeydew of the different hemipteran species, 
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Table 2. Amino acid composition of the honeydew of six hemipteran species feeding on 
Abies alba or Picea abies.  

 Abies alba Picea abies 

Amino acid [%] Cinara 

pectinatae 

Cinara 

confinis 

Cinara 

pilicornis 

Cinara 

piceae 

Physokermes 

piceae 

Physokermes 

hemicryphus 

Glutamate (GLU) 16 ± 17a 6 ± 7a 17 ± 17a 15 ± 15a 7 ± 8a 10 ± 16a 

Glutamine (GLN) 23 ± 21a 23 ± 30a 26 ± 29a 17 ± 21a 37 ± 26a 17 ± 21a 

Aspartate (ASP) 15 ± 15a 4 ± 4b 7 ± 6b 3 ± 2b 3 ± 5b 9 ± 12b 

Asparagine (ASN) 10 ± 11a 3 ± 3a 3 ± 4a 3 ± 4a 4 ± 5a 7 ± 12a 

Proline (PRO) 10 ± 6a 20 ± 25a 8 ± 12a 6 ± 8a 5 ± 6a 14 ± 12a 

Glycine (GLY) 6 ± 9a 1 ± 2a 5 ± 8a 8 ± 15a 12 ± 14a 5 ± 12a 

Serine (SER) 4 ± 3a 3 ± 3a 4 ± 5a 8 ± 12a 4 ± 8a 2 ± 4a 

Alanine (ALA) 6 ± 11a 2 ± 4a,b 4 ± 6a,b 6 ± 5b 5 ± 4a,b 2 ± 3a,b 

Tyrosine (TYR) 0 ± 1a 0 ± 1a 3 ± 4a,b 2 ± 2a,b 4 ± 6b 2 ± 4a,b 

Arginine (ARG) 1 ± 4a 1 ± 1a 1 ± 2a 2 ± 3a 1 ± 1a 0 ± 0a 

Histidine (HIS) 4 ± 5a 27 ± 26b 5 ± 6a 14 ± 19a 4 ± 5a 20 ± 21a 

Lysine (LYS) 2 ± 6a 0 ± 1a 1 ± 2a 5 ± 13a 0 ± 1a 3 ± 10a 

Threonine (THR) 2 ± 6a 1 ± 2a 2 ± 4a 2 ± 4a 2 ± 4a 1 ± 2a 

Valine (VAL) 1 ± 1a 2 ± 4a 3 ± 3a 3 ± 3a 1 ± 2a 1 ± 2a 

Isoleucine (ILE) 0 ± 1a 1 ± 1a,b 1 ± 1a,b 1 ± 1b 1 ± 1a,b 0 ± 1a,b 

Leucine (LEU) 0 ± 0a 1 ± 1a,b 2 ± 4b 1 ± 1a,b 1 ± 1a,b 1 ± 1a,b 

Phenylalanine (PHE) 0 ± 0a 2 ± 3b 1 ± 1a 1 ± 2a 1 ± 2a,b 0 ± 1a 

Tryptophan (TRP) 0 ± 0a 0 ± 1a 2 ± 3a 1 ± 2a 1 ± 2a 1 ± 2a 

Methionine (MET) 0 ± 0a 0 ± 0a 0 ± 0a 0 ± 0a 0 ± 0a 0 ± 0a 

Non-proteinogenic 

amino acids (NP) 

4 ± 9a 3 ± 1a 3 ± 1a 3 ± 1a 6 ± 1a 3 ± 1a 

All values are mean proportions (%) of n = 15 independent measurements ± SD. 
Different letters represent significant differences between the amino acid proportion in 
honeydew of the different hemipteran species. 
Non-proteinogenic amino acids: ß-alanine, γ-amino-butyric acid, homoserine, phosphoserine, 
ornithine, and taurine. 

 

The main anions in honeydew were phosphate (PO4
3-) and chloride (Cl-), and potassium (K+) 

was the most abundant cation (Table 3). Significant differences between the hemipteran species 
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were mainly detected for chloride, phosphate, and ammonium (NH4
+). The proportion of 

phosphate was particularly high in the honeydew of Physokermes species. 

Table 3. Inorganic cation and anion composition of the honeydew of six hemipteran 
species feeding on Abies alba or Picea abies.  

 Abies alba Picea abies 

Ion [%] Cinara 

pectinatae 

Cinara 

confinis 

Cinara 

pilicornis 

Cinara 

piceae 

Physokermes 

piceae 

Physokermes 

hemicryphus 

Cations 

Potassium (K+) 49 ± 10a 81 ± 10b 72 ± 18c 69 ± 15d 77 ± 14e 82 ± 8f 

Sodium (Na+) 9 ± 11a,b 10 ± 7a,b 8 ± 6b 2 ± 1a 2 ± 1a 7 ± 8a,b 

Ammonium (NH4
+) 35 ± 29a 2 ± 3c 12 ± 16b,c 24 ± 15a,b 16 ± 15a,b 5 ± 5c 

Magnesium (Mg2+) 2 ± 1a 4 ± 1a 4 ± 3a 2 ± 2a 3 ± 2a 5 ± 4a 

Calcium (Ca2+) 2 ± 1a,b 2 ± 1a,b 4 ± 4b 3 ± 3a,b 1 ± 1a 1 ± 1a 

Anions 

Chloride (Cl-) 49 ± 21a,b 39 ± 20a,b,c 31 ± 18b,c,d 57 ± 14a 20 ± 11c,d 17 ± 17d 

Phosphate (PO4
3-) 37 ± 20a 32 ± 18a 44 ± 14a,b 14 ± 10d 59 ± 25b 75 ± 20c 

Sulfate (SO4
2-) 10 ± 5a,b 25 ± 12c,d 23 ± 7c,d 25 ± 7d 20 ± 15b,c 6 ± 5a 

Nitrate (NO3
-) 4 ± 5a 4 ± 3a 2 ± 2a 4 ± 9a 0 ± 1a 2 ± 4a 

All values are mean proportions (%) of n = 15 independent measurements ± SD. 
Different letters represent significant differences between the inorganic ion proportion in 
honeydew of the different hemipteran species. 

 

Comparison of honeydew and phloem exudates 
Phloem exudates of bark tissues from A. alba and P. abies were dominated by sucrose 

(about 60 %), but also contained larger proportions of glucose and fructose (about 40 %) (S1 

Table). No other di- or trisaccharides were detected. In contrast, different proportions of further 

disaccharides in addition to sucrose as well as different proportions of trisaccharides (mainly 

melezitose and erlose) were found in all honeydew samples (Table 1, Fig 1). 

All proteinogenic amino acids and some further amino compounds were detected in 

phloem exudates and in honeydew (Fig 2, S2 Table). GLN and GLU were predominant amino 

acids in the honeydew of all six hemipteran species (Table 2) and also in the phloem exudates 
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of A. alba and P. abies (GLN about 18-19% and GLU 8-15%). In honeydew, there was 

additionally a considerable amount of PRO and HIS, the proportions of which were much lower 

in phloem exudates. On the other hand, the proportions of ARG and THR were much higher in 

the phloem exudate of both tree species (ARG 9-15%; THR 10-13%) than in the honeydew of 

all hemipteran species (ARG and THR each 1-2%; Table 2). 

 

Fig 2. Amino acids in phloem exudate and honeydew, each expressed as percentage of the 

total amino acid concentration.  

Cinara species feeding on A. alba, Cinara species feeding on P. abies, and Physokermes species 

feeding on P. abies. The data show means across both species of a hemipteran genus feeding 

on the same tree species for the proportion of amino acids in honeydew (data from Table 2). 

Grey squares: non-essential amino acids, black circles: essential amino acids, white triangles: 

other organic amino compounds. Points with the highest orthogonal distance to the bisecting 

line were noted.  

 

Potassium was the most abundant inorganic ion in all honeydew samples and also in the 

phloem exudate (Fig 3, S3 Table). In honeydew, the most abundant anion was either chloride 

or phosphate (Table 3), whereas in phloem exudate, it was always chloride. 
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Fig 3. Inorganic ions in phloem exudate and honeydew, each expressed as percentage of 

the total inorganic ion concentration.  

Cinara species feeding on A. alba, Cinara species feeding on P. abies, and Physokermes species 

feeding on P. abies. The data show means across both species of a hemipteran genus feeding 

on the same tree species for the proportion of inorganic ions in honeydew (data from Table 3). 

Points with the highest orthogonal distance to the bisecting line were noted. Grey squares: 

cations, black circles: anions. 

 

Honeydew and phloem exudate also showed different ratios sum-of-sugars to sum-of-

amino-acids and sum-of-sugars to sum-of-inorganic-anions (Table 4). The ratios were 

calculated from the total concentration of sugars, amino acids, or inorganic ions either in the 

honeydew of the different hemipteran species or in the phloem exudate of A. alba and P. abies, 

The ratio sum-of-sugars to sum-of-amino-acids was about 6-7 in phloem exudates of both plant 

species (Table 4). The corresponding ratio in the honeydew of the different hemipteran species 

was much higher (2.000-20.000, Table 4). This means that honeydew contains much more 

sugars in relation to amino acids than phloem exudate. The same applies to the inorganic ions.  

The ratio sum-of-sugars to sum-of-inorganic-cations was 30-90 and the ratio sum-of-sugars to 

sum-of-inorganic-anions was 90-900. In phloem exudate, they were about 1-2 and 6-9, 

respectively (Table 4). 
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Table 4. Ratios of different compounds in phloem exudates of Abies alba and Picea abies 
and in the honeydew of different hemipteran species feeding on A. alba and P. abies.  

 Sugars/amino acids Sugars/cations Sugars/anions 

Abies alba 

Phloem exudate 7 ± 1 2 ± 1 9 ± 3 

C. pectinatae honeydew 4580 ± 3959a 68 ± 45b,c 274 ± 162a 

C. confinis honeydew 2163 ± 2999a 55 ± 15a,b,c 139 ± 146a 

Picea abies 

Phloem exudate 6 ± 2 1 ± 0 6 ± 2 

C. piceae honeydew 19416 ± 32641a,b 90 ± 50c 919 ± 713b 

C. pilicornis honeydew 3503 ± 3765a 69 ± 44c 319 ± 137a 

P. piceae honeydew 7152 ± 7151a,b 28 ± 12a 175 ±   95a 

P. hemicryphus honeydew 24107 ± 28870b 33 ± 24a,b 94 ± 90a 

Values for the ratios in honeydew are means of n = 15 independent measurements ± SD. 
Values for the ratios in phloem exudate are means of n = 6 independent measurements ± SD. 
Data are calculated from the concentrations of sugars, amino acids, inorganic cations and 
anions in phloem exudates and honeydew. 
Different letters represent significant differences in sugar-to-amino acids, sugar-to-anions, and 
sugar-to-cations ratios in honeydew of the different hemipteran species. 

 

Honeydew composition in relation to hemipteran species and tree 
species 

In order to reduce the amount and complexity of the data, several NMDS analyses were 

performed. The scatterplot of analyzed sugars is shown in Fig 4A. There is a visual separation 

between the samples of C. piceae and C. pilicornis, and other hemipteran species samples as 

well as a visual separation between C. pectinatae and other hemipteran species. 

Fig 4B shows the loading plot of the analyzed sugars in honeydew. The different sugars 

contribute differently to the separation of the samples. Melezitose is a major contributor to the 

separation of C. piceae and C. pilicornis, whereas sucrose and erlose are major contributors to 

the separation of C. pectinatae.  
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The scatterplot of the amino acids is shown in Fig 4C. In this case, no separation of the 

hemipteran species was found. The corresponding loading plot of the analyzed amino acids in 

honeydew is shown in Fig 4D. 

The scatterplot of inorganic ions is shown in Fig 4E. There is a visual separation 

between P. hemicryphus and the other hemipteran species (Fig 4E). The loading plot of the 

inorganic ions shows that phosphate is a major contributor to the separation of P. hemicryphus 

(Fig 4F).  
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Fig 4. Scatterplots and loadings of NMDS  

(A,C,E) Scatterplots of NMCS for (A) sugars, (C) amino acids, and (E) inorganic ions (stress 

values A=0.18 C=0.19, E= 0.19). Samples of each of the hemipteran species are connected with 

the centroids of the corresponding convex hulls using the function ‘ordispider’ (package 

Vegan). (B,D,F) Loading plots, which illustrate the original variables (B sugars, D amino acids, 
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F inorganic ions) loaded as vectors in NMDS space. The analyses are based on the proportions 

of sugars, amino acids, and inorganic ions in honeydew. 

To support the graphical evaluation, a PERMANOVA and PERMDISP was performed 

with the same honeydew data using hemipteran species and tree species as categorical variables 

(Table 5). When considering sugars, there is a high significance for the category of hemipteran 

species (p < 0.001) with 47.8 % of the data variation being explained by the hemipteran species 

and only 13.69% of the data variation being explained by the tree species (p < 0.001). In 

addition, the non-significant values of PERMDISP for sugars indicate that the separations of 

hemipteran species and tree species in PERMANOVA is caused only by location and not by 

different dispersion. Considering the amino acids, only 10.7 % of the variance is explained by 

the hemipteran species (p < 0.001) and 4.12% by tree species (p < 0.001). For inorganic ions 

only 21.76 % of the data variance is influenced by the hemipteran species and 8.85% by tree 

species (p < 0.001). However, the significant values of ions and amino acids in PERMDISP test 

indicate that there were effects of different dispersions of hemipteran species separation and 

tree species separation in PERMANOVA. In other words, the significant values in PERMDISP 

assume that there is an unbalanced group paired with heterogeneity of variance, which makes 

PERMANOVA very sensitive and promotes type I errors [45]. 
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Table 5. Results of multivariate statistical tests PERMANOVA/PERMDISP based on the 
Euclidean distance matrix of proportions of metabolites and ions in honeydew samples.  

 PERMANOVA PERMDISP 
 Pseudo-F p-value F p-value 

Hemipteran species 
Sugars 47.8 0.001 1.65 0.15 
Amino acids 10.7 0.001 4.86 >0.001 
Ions 21.76 0.001 4.05 0.002 
 
Tree species 
Sugars 13.69 0.001 0.285 0.59 
Amino acids 4.12 0.001 21.87 >0.001 
Ions 8.85 0.001 7.59 0.007 

Hemipteran species: N (permutations) = 999; df  = 5 
Tree Species: N (permutations) = 999; df  = 1 
 

Oligosaccharide formation in aphid whole-body homogenates 
Sucrose was converted to monosaccharides and oligosaccharides in the whole-body 

homogenates of both Cinara species (Fig 5). In the extracts of C. pectinatae, more erlose than 

melezitose was produced, whereas in the extracts of C. pilicornis, more melezitose than erlose 

was produced.  

 

Fig 5. Sugar formation in whole-body homogenates of C. pectinatae and C. pilicornis. 

The aphid homogenates were incubated with 10% sucrose solution. All values are means of 

n=3 independent measurements ± SD. Mann-Whitney U tests comparing means of each sugar 

production rate between different Cinara species (* p < 0.05) were performed. 
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Discussion 
Honeydew of hemipteran species feeding on conifers like spruce or fir is often the basis 

for honeydew honey; therefore, the quality of it is also influenced by the chemical composition 

of the honeydew [30]. For beekeepers and for the honey industry it is important to know which 

factors influence the chemical composition of honeydew, be it the hemipteran species, the host 

trees, and/or environmental factors.  

Origin of sugars in honeydew 
Phloem exudates of bark tissues from A. alba and P. abies contained sucrose, glucose 

and fructose. In contrast, pure phloem sap normally does not contain glucose and fructose [2]. 

Ziegler and Mittler [46] collected phloem sap from P. abies with the help of aphid stylectomy 

and found that sucrose was the only sugar in the phloem. Hexoses in the phloem exudate stem 

mainly from artificially hydrolyzed sucrose by the activity of sucrose cleavage enzymes from 

the wounded surface of the bark [2]. This may also be assumed for A. alba, because the bark 

exudate also contained sucrose and glucose and fructose, but no other di- or trisaccharides. 

In contrast, honeydew of the different hemipteran species feeding on fir or spruce 

contained hexoses like glucose and fructose as well as a wide variety of oligosaccharides which 

do not typically occur in the phloem sap (Table 1). This corresponds to the results of Mittler 

[21], who showed that glucose, fructose, sucrose, and melezitose were present in the honeydew 

of the aphids Tuberolachnus salignus feeding on willow, but not in the phloem sap of willow, 

where only sucrose was present. Therefore, sucrose ingested by the phloem-feeding insects is 

hydrolyzed into glucose and fructose in the insects’ digestive tract. Fisher et al.  [22] suggested 

that, after hydrolyzation of sucrose, a large portion of the glucose is transformed by the aphid 

into glucose-containing oligomers for osmoregulation of ingested phloem sap. The observed 

predominance of fructose over glucose and the presence of large quantities of glucose-

containing oligosaccharides in honeydew (Table 1) supports that. High sucrase activity, an α-
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glucosidase which probably also shows transglucosidation activity, was found in pea aphids 

[25,26,47]. Furthermore, crushed aphids incubated with sucrose solution produced glucose, 

fructose, melezitose, erlose, and other oligosaccharides [19], with melezitose being a 

biosynthetic end product in aphid carbohydrate metabolism [25]. The enzymatic hydrolysis and 

oligosaccharide-forming transglycosidation reactions show considerable specificity for 

sucrose, whereas other sugars remain unaffected [25]. However, the enzymatic level of 

transformations of dietary sucrose or other sugars in the insect gut is not yet completely 

understood [1].  

 

Origin of amino acids in honeydew 
The ratios sugar-to-amino-acids were much lower in the phloem exudate of the host 

plants than in the honeydew of the different hemipteran species (Table 4). Hemipterans are very 

efficient in absorbing amino acids from the ingested phloem sap, as only 1-3% of the amount 

ingested was found in honeydew of different aphid species [9]. 

Weibull et al.  [48] showed that the amino acid composition of phloem samples taken 

from leaves via excised aphid stylets and that of exudates from cut leaves were highly 

correlated. Thus, the exudate technique offers a proper alternative to the aphid stylet technique 

for studying the composition of phloem sap [48]. Although all proteinogenic amino acids were 

found in phloem exudates and honeydew, the composition was different (Fig 2). Most essential 

amino acids were found in lower proportions in honeydew compared to phloem exudate; the 

proportion of HIS, however, was increased. This may be an indication for an active regulation 

mechanism in the insects and varying uptakes of individual amino acids, probably as a result of 

variable supply and demand [11]. 

In general, the main nitrogen source of phloem-feeding hemipterans are free amino 

acids of the phloem sap [1]. In addition, these insects also produce amino acids from sucrose 
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carbon [11] or from the carbon of dietary amino acids [49]. Symbiotic microorganisms, several 

species of Buchnera, are known to be involved in the synthesis of amino acids, including some 

essential amino acids [1,50].  

Origin of inorganic ions in honeydew 
The composition of inorganic ions in honeydew of the different hemipteran species 

roughly reflect that composition in the phloem exudate of A. alba and P. abies. The main cation 

in the honeydew of all analyzed hemipteran species was potassium (50-80% of the total cation 

content), whereas the proportion of sodium was much lower (Table 3). Similar ratios of 

potassium-to-sodium were found in the honeydew of Megoura viciae feeding on Vicia faba 

[51] or in the honeydew of Myzus persicae feeding on Aster tripolium [52]. This is probably 

caused by the diet of the insects. It was proposed that there is also a correlation between the 

diet of an insect and the ratio of potassium-to-sodium in haemolymph: in carnivorous insects, 

this ratio is lower and in herbivorous insects it is higher [53]. 

Honeydew honey contains more inorganic cations and anions than blossom (nectar) 

honey [54]. It could be assumed that this difference is caused by different ratios of sugars-to-

inorganic ions in honeydew and floral nectar, assuming that they are lower in nectar. However, 

the sugar-to-cation and the sugar-to-anion ratios (Table 4) were similar or even higher in 

honeydew than in floral nectar of other plant species [38,55]. Therefore, differences in the 

content of inorganic ions in both types of honey must have further and other reasons. 

Sugar composition is influenced by the hemipteran species 
The analysis of the data shows that the hemipteran species has a much higher influence 

on the sugar composition of the honeydew than the tree species (Table 5). In the case of the 

amino acids or ions, the variance of the data cannot be elucidated by either the hemipteran 

species or the conifer species. This raises the question whether there are models or selective 

agents beyond this to predict the honeydew composition. The honeydew composition may also 
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depend on several environmental factors, like weather conditions or ant tending as well as the 

developmental stage of the host plant or the insect [9,18]. 

It has been shown that melezitose has negative effects on the quality of honeydew 

honey, and the so-called “cement honey” is associated with the melezitose content [56]. 

Furthermore, melezitose can have negative effects on overwintering honey bees [57]. The 

results of the present study show that the sucking hemipteran and not the conifer species is 

primarily responsible for the diversity of the oligosaccharides, especially melezitose and erlose, 

in honeydew (Table 5). This corresponds with the results of other hemipteran and host plant 

species. Bacon and Dickinson [19] found that the honeydew of the aphid Eucallipterus tiliae 

(L.) feeding on lime tree contained appreciable amounts of melezitose, whereas in the 

honeydew of the scale insect Eulecanium coryli (L.) feeding also on lime tree, no melezitose 

could be detected. A wide variation in the proportions of erlose and melezitose in honeydew 

was also observed for eight aphid species feeding on Tanacetum vulgare [4]. 

Moreover, incubation of sucrose with whole-body homogenates of C. pectinatae and C. 

pilicornis resulted in similar oligosaccharide patterns as were found in honeydew samples (Fig 

5). This indicates that different aphid species probably have different enzymatic activities, 

which lead to different oligosaccharide compositions in honeydew. The total rate of sucrose 

hydrolyses was similar in both aphid species (about 1.5 mg sucrose mg-1 fresh weight of aphid 

day-1) and with that corresponds to the rates of sucrose hydrolyses reported by Bacon and 

Dickinson ([19]; about 1 mg sucrose mg-1 fresh weight of aphid day-1). 

Liebig [20] found higher proportions of melezitose (up to 20%) in the honeydew of C. 

pectinatae on A. alba than was shown in this study (2%). Reasons for this difference may be 

the high variability between samples, even if taken from the same hemipteran species and the 

same host plant [18], or different environmental conditions during sample collection. 

Unfortunately, in the study by Liebig [20], the proportion of the other important trisaccharide, 
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erlose, was not shown. Therefore, it cannot be excluded that the two trisaccharides were not 

separated. 

The proportion of melezitose in honeydew was related to the presence or absence of 

ants [18]. Woodring et al.  [4] proposed that ants are attracted to melezitose not because it is 

itself a valuable food source, but because it is associated with a very sugar-rich honeydew. In 

the present study, ant-tending was not analyzed in detail. Differences in ant-tending among the 

Cinara species are known from the literature; C. piceae (on spruce) and C. confinis (on fir) are 

more often tended by ants while C. pilicornis (on spruce) and C. pectinatae (on fir) are rarely 

tended by ants [30]. Considering these general data, there is no correlation between ant-tending 

and melezitose content in honeydew of the analyzed Cinara species. However, the variation in 

honeydew composition within the hemipteran species may in part reflect variation in ant-

hemipteran interaction. 

Conclusion 
In conclusion, the sucking hemipteran and not the host plant is primarily responsible for 

the diversity of the sugars, especially the oligosaccharides in honeydew. In the case of inorganic 

ions, mainly the proportions of chloride, phosphate, and ammonium showed significant 

differences between the honeydews of different hemipteran species. In contrast, the 

composition of amino acids in honeydew was rather similar across the hemipteran species.  
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Supporting information 
S1 Table. Sugar composition in phloem exudates of Abies alba and Picea abies. All values 
are mean proportions (%) of n = 6 independent measurements ± SD. 

Sugar [%] Abies alba Picea abies 

Glucose (glu) 19 ± 4 15 ± 2 

Fructose (fru) 24 ± 4 27 ± 2 

Sucrose (suc) 57 ± 8 58 ± 3 

 

S2 Table. Amino acid composition in phloem exudates of Abies alba and Picea abies. All 
values are mean proportions (%) of n = 6 independent measurements ± SD. 

Amino acid [%] Abies alba Picea abies 

Glutamate (GLU) 7.6 ± 1.2 15.0 ± 2.3 

Glutamine (GLN) 18.1 ± 4.6 19.4 ± 9.4 

Aspartate (ASP) 5.6 ± 0.8 11.7 ± 3.7 

Asparagine (ASN) 2.2 ± 0.7 1.9 ± 1.5 

Proline (PRO) 0.1 ± 0.0 0.1 ± 0.1 

Glycine (GLY) 2.0 ± 0.6 1.5 ± 0.6 

Serine (SER) 7.2 ± 0.9 5.9 ± 1.8 

Alanine (ALA) 3.6 ± 2.2 3.8 ± 1.1 

Tyrosine (TYR) 1.5 ± 0.2 0.8 ± 0.5 

Arginine (ARG) 14.9 ± 3.1 8.8 ± 5.2 

Histidine (HIS) 2.6 ± 0.6 1.5 ± 0.2 

Lysine (LYS) 2.0 ± 0.2 0.9 ± 0.2 

Threonine (THR) 13.2 ± 2.4 10.0 ± 5.2 

Valine (VAL) 5.4 ± 0.3 6.4 ± 1.7 

Isoleucine (ILE) 0.6 ± 0.1 1.5 ± 1.3 

Leucine (LEU) 0.7 ± 0.3 1.1 ± 0.7 

Phenylalanine (PHE) 0.6 ± 0.1 0.5 ± 0.2 

Tryptophan (TRP) 0.8 ± 0.3 0.9 ± 0.4 

Methionine (MET) 0.4 ± 0.2 0.2 ± 0.2 

Non-proteinogenic amino 

acids (NP) 
10.9 ± 3.0 8.1 ± 2.7 
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S3 Table. Inorganic cation and anion composition in phloem exudates of Abies alba and 
Picea abies. All values are mean proportions (%) of n = 6 independent measurements ± SD. 

Ion [%] Abies alba Picea abies 

Cations   

Potassium (K+) 71.3 ± 3.6 77.4 ± 3.0 

Sodium (Na+) 5.9 ± 3.0 5.3 ± 0.7 

Ammonium (NH4
+) 7.2 ± 3.5 5.8 ± 1.9 

Magnesium (Mg2+) 5.9 ± 1.5 5.0 ± 1.1 

Calcium (Ca2+) 9.7 ± 2.6 6.5 ± 2.3 

Anions   

Chloride (Cl-) 59.6 ± 10.1 52.7 ± 5.7 

Phosphate (PO4
3-) 22.1 ± 13.1 29.0 ± 6.7 

Sulfate (SO4
2-) 13.5 ± 6.0 14.1 ± 2.0 

Nitrate (NO3
-) 4.9 ± 2.3 4.2 ± 2.2 
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3.2. Section II: Effects of different temperatures on 
melezitose production in aphid species  

Environmental factors like temperature and humidity can influence melezitose content in 

honeydew. Aphids belong to the poikilothermic animals, i.e. their body temperature is variable 

and dependent on ambient temperature. Therefore, two aphid species were investigated to study 

the effect of temperature on the production of melezitose and other sugars in their body. First, 

melezitose proportions were determined in honeydew samples of C. pilicornis and C. 

pectinatae in two different years 2016 and 2017. In addition, whole body of C. pilicornis and 

C. pectinatae  were homogenized and incubated with 10% sucrose at three different temperature 

(25, 30, and 35°C) for 120 minutes and the sugar content were then determined via HPLC. 

 

Fig 3. 1. Melezitose proportion of C. pilicornis and C. pectinatae honeydew in year 2016 and 

2017. The aphid homogenates were incubated with 10% sucrose solutions. All values are means 

of n=10 independent measurements ± SD. T-tests comparing means of melezitose proportions 

for each Cinara species (*p < 0.05, ** p < 0.01, *** p < 0.001).  

Melezitose proportions for honeydew of C. pilicornis collected in summer 2017 is significantly 

higher than it is in 2016 (Fig 3.1). Further, the proportion of melezitose increased also in C. 

pectinatae honeydew but no significant differences were obtained. In addition, in both years 

melezitose proportions were higher in the honeydew of C. pilicornis compared to C. pectinatae.  
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Both aphids were able to digest sucrose to glucose, fructose, trehalose, melezitose and erlose at 

all tested temperature (Table 3.1). Moreover, glucose and fructose have the highest 

concentration among other sugars and significant differences in their concentration were 

obtained between 25 and 35°C. Trehalose concentration was almost stable in both aphid species 

and at all tested temperatures.  

Table 3. 1. Sugar concentration from whole aphid’s body incubated with 10% sucrose solution 

for 120 min at three different temperatures. 

 C. pilicornis C. pectinatae 

Sugars (mmol/L) 25° C 30° C 35° C 25° C 30° C 35° C 

Glucose 11 ± 5 11 ± 2 26 ± 4** 8 ± 2 15 ± 5 18 ± 7** 

Fructose 9 ± 3 8 ± 2 19 ± 4** 7 ± 2 11 ± 1 15 ± 5** 

Trehalose 3 ± 1 2 ± 0 2 ± 0 1 ± 0 1 ± 0 2 ± 0 

Melezitose 6 ± 5 6 ± 0 11 ± 2** 1 ± 0 1 ± 1 4 ± 1* 

Erlose 0 ± 1 2 ± 1 1 ± 1 4 ± 2 9 ± 2 14 ± 5** 

Further sugars 1 ± 1 1 ± 0 1 ± 1 0 ± 0 1 ± 1 3 ± 2 

All values are means of n=3 independent measurements ± SD. Dunn’s tests comparing means 

of sugars productions concentration at different temperatures for each Cinara species (*p < 

0.05, ** p < 0.01, *** p < 0.001). 

Additionally, the melezitose production was higher for C. pilicornis than for C. pectinatae, and 

the erlose production was higher for C. pectinatae than for C. pilicornis. Further, the production 

of melezitose and erlose of both Cinara species increased at higher temperature. This increase 

is significant between 25 and 35°C for both species (Fig 3.2). 

In addition, glucose, fructose, erlose and melezitose concentrations in whole aphid’s body 

increased in high temperature. Therefore, we can assume that they were produced because of 

enzymatic activity. However, enzymatic activity increases generally in high temperature. In 

addition, although more melezitose occurs at high temperatures in both species, the melezitose 

formation in the whole C. pilicornis body is remains significantly higher than in C. pectinatae. 

Therefore, we can assume that the honeydew producers is mainly influence the melezitose 

concentration in honeydew. 
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Fig 3. 2. Melezitose production in whole-body homogenates of C. pilicornis and C. pectinatae 

at three different temperatures. The aphid homogenates were incubated with 10% sucrose 

solutions. All values are means of n=3 independent measurements ± SD. Dunn’s tests 

comparing means of melezitose production rates at different temperatures for each Cinara 

species (*p < 0.05, ** p < 0.01, *** p < 0.001). The production of melezitose differs 

significantly between 25 and 35° C in both Cinara species. 
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3.3. Section III: The ability of honeybees A. mellifera to 
digest melezitose 

 

Worker honeybees gather nectar or honeydew, stored in hives and produce honey. While nectar 

contains no melezitose, honeydew can contain melezitose. In addition, the ability of honeybees 

to digest melezitose is not completely understood. Therefore, two experiments were taken place 

to investigate this issue. In the first experiment, bees were fed with two different solutions (with 

melezitose and without melezitose) in order to understand if melezitose is digested by bees. 

Newly emerged bees were placed in hive’s cages and the temperature was adjusted to 35°C. 

Then, bees were fed with two different solutions, without melezitose S1 (31% glucose, 39% 

fructose and 30% sucrose) and with melezitose S2 (15.5% glucose, 19.5% fructose, 15% 

sucrose and 50% melezitose). After 21 days, the cages contents were collected (This were done 

by Victoria Seeburger at the University of Hohenheim). Then, sugars composition were 

analyzed via HPLC.  

At the second experiment, the ability of workers abdomen to digest melezitose is investigated. 

The abdomen of worker honeybees was homogenate and three sugar solutions were added for 

120 minutes (S1: 10% melezitose and 10% sucrose, S2: 20% melezitose and S3: 20% sucrose). 

3.3.1. Feed experiment of honeybees  

Young bees were able to digest melezitose and sucrose. They also produced glucose and 

fructose (Fig 3.3). In both solutions, glucose and fructose proportions are increased and sucrose 

and melezitose proportions are decreased. In addition, fructose proportion was higher than 

glucose in both solutions after 21 days. 

The proportion of sucrose in S1 solution decreased from 30% to less than 10%, while glucose 

and fructose proportions grow about 10% each. The proportion of melezitose decreased 

dramatically in S2 solution from 50% to approximately 19% after 21 days. In addition, the 

sucrose proportion in S2 solution was clearly decreased. Moreover, glucose and fructose 

proportions grew about 20%.  
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Fig 3. 3. Sugar compositions in “honey” produced by bees after 21 days fed on two different 

solutions. All values of day 21 are means of n=33 independent measurements ± SD for S1 and 

means of n=68 independent measurements ± SD for S2.  
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3.3.2. Sugar cleavage in abdomen homogenates of adult’s A. mellifera 

In S1 solution, sucrose was particularly cleavage after 60 minutes. Moreover, melezitose 

proportion decreased slowly. More precisely, after 120 minutes abdomen enzymes split less 

than 20% of the melezitose (Fig 3.4; S1). However, melezitose proportion in the solution differs 

significantly after 120 minutes. The same results were shown if only sucrose or melezitose was 

given. 

 

 

Fig 3. 4. Sugar proportions in abdomen homogenates of A. mellifera during the experiment. 

The honeybee abdomen homogenates were incubated with S1 (10% sucrose/10% melezitose), 

S2 (20% melezitose) and S3 (20% sucrose) solution. All values are means of n = 3 independent 

measurements ± SD. 
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3.4. Section IV: Honeydew honey profiling of fir, 
spruce and pine honey 

 

Honeydew honey should be characterized according to its botanical, zoological or geographical 

origins. Therefore, the ability of sugars, amino acids and inorganic ions to identify the botanical, 

zoological and geographical origin of honeydew honey was investigated. 

Honeydew honey samples were collected from two geographical origins (Germany and Turkey) 

and three different botanical origins (pine, fir and spruce). However, the zoological origins of 

those samples were only identified by the German samples (fir/Cinara, spruce/Cinara, and 

spruce/Physokermes). Then, sugars, amino acids, and inorganic ions profiles of the honeydew 

honey samples were determined via HPLC. In addition, the total proteins content of all honey 

were also determined.  

Sugar, amino acids and inorganic ions profiles for honeydew honey 

The monosaccharides glucose and fructose were the dominant sugars in all samples (about 

60g/100g honey), and the fructose content was always higher than that of glucose content 

(Table 3.2). No significant differences of glucose contents between the four groups of honey 

were found, but fructose was significantly higher in pine honey. Different disaccharides 

(sucrose, trehalose, isomaltose, maltose, turanose and kojibiose) were detected in all honeydew 

honey samples, with trehalose showed high contents in fir and spruce samples and a 

significantly lower content in pine honey. Further, isomaltose showing the highest contents in 

all samples, especially in pine honey. It must be stated, however, that the isomaltose peak was 

not separated from the maltulose peak. Melezitose and erlose were the dominant trisaccharides. 

Melezitose was the most abundant trisaccharide in fir and spruce Cinara honey and in pine 

honey, whereas the erlose content was significantly higher in spruce/Physokermes honey 

compared to the other honey samples. Several further sugars were detected in the honey 

samples, named as undefined 1 to 7. Undefined sugar 6 is probably an oligosaccharide and its 

content was significantly higher in spruce/Physokermes honey than in fir/- or spruce/Cinara or 

pine honey. Additionally, undefined sugar 3 can also be an oligosaccharide and the content was 

higher in pine samples comparing to other samples (Table 3.2). 
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Table 3. 2. Sugar contents in four groups of honeydew honey (Abies alba/Cinara spec., Picea 
abies/Cinara spec., Picea abies/Physokermes spec., and Pinus sp.).  

 Abies alba Picea abies Pinus sp. 
Sugars [g/100g] Cinara sp. Cinara sp. Physokermes sp. n.d.**** 
Glucose (glu) 29.6 ± 2.5a 28.3 ± 3.6a 27.5 ± 3.9a 26.1 ± 1.8a 
Fructose (fru) 29.9 ± 3.8a 30.5 ± 3.7a,b 28.4 ± 2.6a 33.9 ± 3.2b 
Sucrose (suc) 1.09 ± 0.56a 0.87 ± 0.52a 1.15 ± 0.69a 1.36 ± 0.5a 
Trehalose (tre) 1.92 ± 0.86a 1.22 ± 0.75a 1.75 ± 0.78a 0.1 ± 0.05b 
Maltose (mal) 0.95 ± 0.49a 0.87 ± 0.85a 0.97 ± 0.74a 1.11 ± 0.28a 
Isomaltose* (iso) 2.42 ± 1.30a 2.00 ± 1.00a 1.55 ± 0.44a 3.78 ± 0.94b 
Kojibiose (koj) 1.09 ± 0.41a 1.17 ± 0.71a 1.34 ± 0.89a 1.12 ± 0.33a 
Turanose** (tur) 1.39 ± 0.79a 1.03 ± 0.51a 0.94 ± 0.85a 0.11 ± 0.07a 
Melezitose (mel) 3.29 ± 2.12a 5.20 ± 4.37a 3.36 ± 1.98a 2.68 ± 1.67b 
Erlose (erl) 1.97 ± 1.73a 1.31 ± 0.99a 5.01 ± 3.35b 0.28 ± 0.3c 
Raffinose (raf) 0.83 ± 0.79a 0.53 ± 0.50a 0.71 ± 0.63a 0.24 ± 0.13a 
1-Kestose*** (kes) 0.34 ± 0.64a 0.89 ± 1.23a 1.36 ± 1.36a 1.4 ± 0.41a 
Undef 1 0.06 ± 0.07a 0.08 ± 0.09a 0.08 ± 0.07a 0.03 ± 0.03a 
Undef 2 0.06 ± 0.08a 0.05 ± 0.04a 0.09 ± 0.12a 0.25 ± 0.09a 
Undef 3 0.00 ± 0.00a 0.33 ± 0.78a 0.12 ± 0.38a 1.61 ± 0.49b 
Undef 4 0.93 ± 0.49a 1.07 ± 0.33a 1.11 ± 0.47a 0.87 ± 0.56a 
Undef 5 0.07 ± 0.09a 0.08 ± 0.11a 0.15 ± 0.15a 0.0 ± 0.0a 
Undef 6 0.81 ± 0.60a 0.46 ± 0.56a 1.71 ± 0.85b 0.0 ± 0.0c 
Undef 7 0.10 ± 0.20a 0.08 ± 0.18a 0.21 ± 0.28a 0.0 ± 0.0a 

All values are means of n = 12 independent measurements ± SD. 
Different letters represent significant differences between the sugars in the tree groups of 
honeydew honey. 
*peak of isomaltose was not completely separated from maltulose peak. 
**peak of turanose was not completely separated from isomaltulose and gentiobiose peak. 
***peak of kestose was not completely separated from nigerose and stachyose peak. 
Undef. = undefined Peaks 
****n.d. = not determined 
 

All proteinogenic as well as further non-proteinogenic amino acids were found in the honey 

samples, but some amino acid contents differ significantly among honeydew honey groups. 

More precisely, the contents of proline, tyrosine, arginine, lysine, and isoleucine differed 

significantly between the four groups of honey. Proline was the dominant amino acid in all 

groups; its content was up to 90% of the total amino acids content. However, the total contents 

of all free amino acids were particularly low in all honey samples (less than 0.1g/100g honey; 

Table 3.3).  
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Table 3. 3. Amino acid contents in four groups of honeydew honey (Abies alba/Cinara spec., 

Picea abies/Cinara spec., Picea abies/Physokermes spec., and Pinus sp.). 

 Abies alba Picea abies Pinus sp. 
Amino acids 
[mg/100g] Cinara sp. Cinara sp. Physokermes sp. n.d.* 

Glutamate (GLU) 1.25 ± 0.68a 2.48 ± 2.48a 1.54 ± 2.24a 5.87 ± 2.47a 
Glutamine (GLN) 1.79 ± 1.86a 3.83 ± 3.41a 1.71 ± 2.62a 5.8 ± 2.98a 
Aspartate (ASP) 0.56 ± 0.56a 1.93 ± 2.12a 1.51 ± 2.96a 1.54 ± 0.54a 
Asparagine(ASN) 0.78 ± 0.67a 1.61 ± 1.60a 1.13 ± 2.93a 1.09 ± 0.45a 
Proline (PRO) 60.0 ± 15.5a 49.2 ± 21.6a,b 37.1 ± 21.0b 54.0 ± 15.1a 
Glycine (GLY) 0.25 ± 0.10a 0.35 ± 0.22a 0.24 ± 0.17a 0.97 ± 0.37a 
Serine (SER) 0.35 ± 0.19a 0.68 ± 0.59a 0.40 ± 0.32a 1.27 ± 0.46a 
Alanine (ALA) 0.68 ± 0.40a 1.14 ± 0.89a 0.98 ± 1.25a 1.62 ± 0.47a 
Tyrosine (TYR) 0.31 ± 0.15a 0.84 ± 0.44b 0.77 ± 0.52b 0.58 ± 0.32a 
Arginine (ARG) 0.20 ± 0.17a 0.58 ± 0.39b 0.30 ± 0.23a,b 0.33 ± 0.11a 
Histidine (HIS) 0.11 ± 0.37a 0.36 ± 0.54a 0.54 ± 0.57a 0.0 ± 0.0a 
Lysine (LYS) 0.16 ± 0.12a 0.58 ± 0.55b 0.25 ± 0.16a,b 0.24 ± 0.13a 
Threonine (THR) 0.14 ± 0.06a 0.30 ± 0.22a 0.20 ± 0.19a 0.18 ± 0.08a 
Valine (VAL) 0.27 ± 0.17a 0.55 ± 0.36a 0.38 ± 0.25a 0.40 ± 0.14a 
Isoleucine (ILE) 0.16 ± 0.11a 0.35 ± 0.23b 0.21 ± 0.1a,b 0.40 ± 0.68a 
Leucine (LEU) 0.18 ± 0.24a 0.34 ± 0.28a 0.38 ± 0.29a 0.15 ± 0.08a 
Phenylalanine (PHE) 0.50 ± 0.48a 1.57 ± 1.41b 0.49 ± 0.34a 0.82 ± 1.11a 
Tryptophan (TRP) 0.22 ± 0.13a 0.19 ± 0.33a 0.13 ± 0.11a 0.0 ± 0.0a 
Methionine (MET) 0.04 ± 0.06a 0.13 ± 0.15a 0.03 ± 0.04a 0.04 ± 0.03a 
ß-Alanine (ß-ALA) 0.48 ± 0.21a 0.87 ± 0.56a 0.45 ± 0.17a 0.95 ± 0.33a 

γ-Amino-butyric 
acid (GABA) 

0.17 ± 0.10a 0.51 ± 0.33a 0.36 ± 0.47a 0.45 ± 0.20a 

Further non-
proteinogenic amino 
acids (NP) 

0,22 ± 0,17a 0,70 ± 0,48a 0,46 ± 0,43a 1.10 ± 0.89a 

All values are means of n = 12 independent measurements ± SD. 
Different letters represent significant differences between the sugars in the tree groups of 
honeydew honey. 
Further non-proteinogenic amino acids: homoserine, phosphoserine, ornithine, and taurine. 
*n.d. = not determined 
 
 
Honeydew honey samples contained several inorganic ions and the total content of inorganic 

ions was about 0.5g/100g honey (Table 3.4). Potassium (K+) was the main cation and phosphate 

(PO4
3-) was the most abundant anion. Magnesium and phosphate differed significantly between 
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the four groups of honey. The phosphate content was about 2-fold higher in 

spruce/Physokermes honey than in Cinara honey and much lower in pine honey. Chloride was 

about 3-fold higher in pine honey (Turkey) comparing to fir and spruce honey (Germany). 

 

Table 3. 4. Inorganic ions contents in four groups of honeydew honey (Abies alba/Cinara spec., 

Picea abies/Cinara spec., Picea abies/Physokermes spec., and Pinus sp.). 

 Abies alba Picea abies Pinus sp. 
Ion [mg/100g] Cinara sp. Cinara sp. Physokermes sp. n.d.* 
Cations  
Potassium (K+) 213 ± 69a 185 ± 3a 252 ± 103a 318 ± 61b 
Sodium (Na+) 2 ± 5a 3 ± 4a 4 ± 7a 1 ± 1b 
Ammonium (NH4

+) 9 ± 3a 7 ± 4a 6 ± 4a 7 ± 4a 
Magnesium (Mg2+) 12 ± 7a 15 ± 9a,b 22 ± 14b 10 ± 3a 
Calcium (Ca2+) 4 ± 2a 4 ± 5a 6 ± 8a 5 ± 4a 
Anions  
Chloride (Cl-) 26 ± 8a 32 ± 19a 43 ± 42a 103 ± 44b 
Phosphate (PO4

3-) 122 ± 55a 109 ± 33a 210 ± 48b 32 ± 22c 
Sulfate (SO4

2-) 20 ± 4a 20 ± 6a 28 ± 13a 27 ± 10a 
Nitrate (NO3

-) 2 ± 2a 2 ± 2a 2 ± 4a 5 ± 3a 

All values are means of n = 12 independent measurements ± SD. 
Different letters represent significant differences between the inorganic ion content in the tree 
groups of honeydew honey. 
*n.d. = not determined  
 
Protein content was significantly high in pine honey comparing to fir and spruce honey, about 

0.8 g/100 g honey (Table 3.5). In addition, protein content in fir and spruce honey was almost 

4-fold lower than in pine honey. 

Table 3. 5. Protein contents in four groups of honeydew honey (Abies alba/Cinara spec., Picea 

abies/Cinara spec., Picea abies/Physokermes spec., and Pinus sp.). 

 Abies alba Picea abies Pinus sp. 
 Cinara sp. Cinara sp. Physokermes sp.  
Protein [mg/100g] 175 ± 82a 175 ± 94a 209 ± 134a 769 ± 190b 
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Honey composition in relation to the botanical origin 

In order to ascertain whether the differences in sugar, amino acid, and ion contents could be 

explained by the botanical origin of the fir, spruce and pine honey samples, several redundancy 

analysis (RDA) were performed. All sugars, amino acids, and ions were taken for the RDA and 

all metabolite values were standardized as g/100g. Almost 22% of sugar variation were 

explained by the botanical origins (Table 3.6). However, about 20% of amino acids and 

inorganic ions variations were explained by the botanical origins. This means that the remaining 

80% of the total variation is caused by other factors. A permutation F-test based on the 

canonical R2 was carried out to test for the significance of controlled variable explanation. 

Because all p-values were significant, the interpreting of the loading plots was meaningful 

(Table 3.6).  

Table 3. 6. Results of the RDA: Degrees of freedom (df), variance (%), pseudo-F (F), and p-
values.  

  df Variance (%) F p-value 

Sugar Botanical origin 2 21.6 6.197 0.001 *** 

 Residual 45 78.4   

Amino acid Botanical origin 2 19.19 5.344 0.001 *** 

 Residual 45 80.81   

Inorganic ion Botanical origin 2 19.52 5.457 0.001 *** 

 Residual 45 80.48   

Permutation: free, Number of permutations: 999 

Pairwise comparisons showed that the sugars, amino acids and inorganic ions values of pine 

honey differed significantly from fir and spruce honey (Table 3.7). However, sugars values had 

no significant difference between fir and spruce honey. 

Table 3. 7. P-values of pairwise comparisons for each group of honeydew honey.  

  Fir/pine Fir/spruce Spruce/pine 

p-value 

Sugar 0.001 *** 0.560 0.001 *** 

Amino acid 0.012 ** 0.380 * 0.006 ** 

Inorganic ion 0.030 ** 0.360 * 0.038 * 
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Pine honey were visually separated from fir and spruce honey in all three RDA plots (Fig 3.6. 

A, C and E). Fructose, isomaltose, undef3 and undef2 sugars were responsible for the separation 

of pine honey samples (Fig 3.6. B). Moreover, GLY, GLU, SER, GLN, and PRO caused the 

separation of pine honey (Fig 3.6. D). Additionally, potassium, chloride and nitrate were 

responsible for the separation of pine honey (Fig 3.6. F). 

Honey composition in relation to the zoological origin 

Fir and spruce honey were not separated efficiency considering the botanical origins of the 

honey samples. However, fir and spruce honey have different zoological origins. In addition, 

honeydew components are mainly influenced by the honeydew producers. Therefore, fir and 

spruce honey were characterized in three different groups, fir/Cinara, spruce/Cinara, and 

spruce/Physokermes. Moreover, in order to ascertain whether the differences in sugar, amino 

acid, and ion contents could be explained by the zoological or botanical origin of the fir and 

spruce honey samples, a redundancy analysis (RDA) was performed. Only sugars, amino acids, 

and ions that showed significant differences in the analysis of variance were taken for the RDA. 

All metabolite values were standardized as g/100g. The percentage of variation explained by 

the honeydew producer (zoological origin = 28.94 %) was higher than that for the tree species 

(botanical origin = 10.51 %; Table 3.8). This also means that the remaining 60.55% of the total 

variation is caused by other factors, for example the honeybee population, the geographical 

location or environmental conditions. A permutation F-test based on the canonical R2 was 

carried out to test for the significance of controlled variable explanation. Because both p-values 

were significant, the interpreting of the loading plots was meaningful (Table 3.8). It was 

possible to visually separate three groups of honey (fir/Cinara, spruce/Cinara, and 

spruce/Physokermes; Fig 3.7. A), with erlose, undefined sugar 6, magnesium, and phosphate 

being responsible for the separation of spruce/Physokermes honey samples (Fig 3.7. B). 

Additionally, proline was the reason for the separation of fir/Cinara honey from the other two, 

and tyrosine, arginine, lysine, isoleucine, and phenylalanine caused the separation of 

spruce/Cinara from other honeys (Fig 3.7. B). Pairwise comparisons showed that the values of 

each botanical or zoological origin differed significantly from each other (Table 3.9). 
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Fig 3. 5. Redundancy Analysis (RDA) plots (A, C and E) are score plots from the constrained 

Principal Component Analysis (PCA). Samples of each of the botanical origin are connected 

with the centroids of the corresponding convex hulls. (B, D and F) are loading plots, which 

illustrate the original variables loaded as vectors in PCA space. The analyses are based on the 

content of sugars, amino acids, and inorganic ions in honeydew honey. 
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Fig 3. 6. Redundancy Analysis (RDA) plots. (A) Score plot from the constrained Principal 

Component Analysis (PCA). Samples of each of the honey groups are connected with the 

centroids of the corresponding convex hulls. (B) Loading plots, which illustrate the original 

variables loaded as vectors in PCA space. 

 

Table 3. 8. Results of the RDA: Degrees of freedom (df), variance (%), pseudo-F (F), and p-
values.  

 df Variance (%) F p-value 

Botanical origin 1 10.51 3.99 0.005 ** 

Zoological origin 2 28.94 6.72 0.001 *** 

Residual 32 60.55   

Permutation: free, Number of permutations: 999 

Table 3. 9. P-values of pairwise comparisons for each group of honeydew honey.  

 Fir/Cinara Spruce/Cinara 

Spruce/Cinara 0.0020 ** - 

Spruce/Physokermes 0.0015 ** 0.15  
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3.5. Section V: Nectar, honeydew and honey profiling 
of lime tree Tilia sp. 

 

There are two possible kinds of honeys from lime tree. First, the blossom honey, which 

honeybees prepare from the nectar of the lime tree flowers, and the second lime honey occur 

when honeybees collect honeydew of hemipteran species, like Eucallipterus tiliae, feeding on 

lime trees. To investigate if differences between nectar and honeydew are reflected in lime 

honeys, samples from nectar, honeydew and honey of lime trees were collected and analyzed 

for sugars, amino acids and inorganic ions. 

The main sugars in honey were glucose and fructose (Table 3.10 and Fig 3.7). Moreover, the 

proportion of fructose was slightly higher than that of glucose. Sucrose has the highest 

proportion in nectar and honeydew samples. Further, trehalose, melezitose and erlose were only 

found in honeydew and honeys. About 20% of honeydew sugars proportion was melezitose, 

but this proportion decreased to only 6% in honey. The same for erlose, its proportion decreased 

from 9% in honeydew to only 1% in honey samples.  Additionally, trehalose proportions were 

only 1% in honeydew and honey samples and no trehalose were found in nectar. Furthermore, 

small amount of raffinose were determined in nectar, honeydew and honey. It was about 1% of 

all sugar proportions.  

All proteinogenic, and some non-proteinogenic, amino acids were detected in nectar, honeydew 

and honey, but with different proportions (Table 3.11). Alanine, asparagine and glutamine were 

the dominant amino acids in nectar. In addition, glutamate, serine, aspartate and asparagine 

were found mostly in honeydew. Further, honey contain all amino acids that were detected in 

nectar and honeydew, but proline was clearly the dominant one with approximately 55% of the 

total amount of amino acids. On the contrary, proline proportions in nectar and honeydew were 

only about 1%.  
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Table 3. 10. Sugar proportions in nectar, honeydew and honey of Tilia sp. 

Sugars [%] 
Nectar 
n= 8 

Honeydew 
n= 9 

Honey 
n=12 

Glucose (glu) 27 ± 2a 10 ± 1b 39 ± 3c 
Fructose (fru) 27 ± 2a 15 ± 0b 42 ± 3c 
Sucrose (suc) 44 ± 3a 39 ± 4a 2 ± 1b 
Trehalose (tre) 0 ± 0a 1 ± 0a 1 ± 0a 
Maltose (mal) 0 ± 0a 2 ± 3b 1 ± 0a,b 
Isomaltose* (iso) 0 ± 0a 0 ± 0a 2 ± 1b 
Kojibiose (koj) 0 ± 0a 0 ± 0a 2 ± 1b 
Turanose** (tur) 0 ± 0a 0 ± 0a 1 ± 0b 
Melezitose (mel) 0 ± 0a 21 ± 3b 6 ± 3c 
Erlose (erl) 0 ± 0a 9 ± 3b 1 ± 0a 
Raffinose (raf) 1 ± 1a 1 ± 0a 2 ± 1b 
1-Kestose*** (kes) 0 ± 0a 0 ± 0a 1 ± 0a 
Undef 1 0 ± 0a 0 ± 0a 0 ± 0a 
Undef 2 0 ± 0a 0 ± 0a 0 ± 0a 
Undef 3 0 ± 0a 0 ± 0a 0 ± 0a 
Undef 4 0 ± 0a 0 ± 0a 0 ± 0a 
Undef 5 0 ± 0a 0 ± 0a 0 ± 0a 
Undef 6 0 ± 0a 0 ± 0a 0 ± 0a 
Undef 7 0 ± 0a 0 ± 0a 0 ± 0a 

Total content 
1764 ± 330 

mmol/L 
3271 ± 1003 

mmol/L 
77.62 ± 5.94 
g/100g honey 

All values are means of independent measurements ± SD. 
Different letters represent significant differences between the sugars in nectar, honeydew and 
honey. 
*peak of isomaltose was not completely separated from maltulose peak. 
**peak of turanose was not completely separated from isomaltulose and gentiobiose peak. 
***peak of kestose was not completely separated from nigerose and stachyose peak. 
Undef. = undefined Peaks 
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Fig 3. 7. Sugar proportion in nectar, honeydew and honey of Tilia sp. All values are mean 

proportions (%) independent measurements ± SD. Data were taken from Table 3.10. Different 

letters represent significant differences in sugars proportion between nectar, honeydew and 

honey (Tukey’s HSD; p < 0.05).  

 

Potassium was the main cation and chloride was the main anion in all samples of phloem 

exudate, nectar, honeydew and honey (Table 3.12). Additionally, phloem exudate has a high 

proportion of phosphate, but low sulfate and nitrate proportions. Further, nectar showed 

significantly higher proportions of ammonium and sodium than honeydew or honey. Moreover, 

magnesium was significantly higher in honeydew than nectar or honey. Although all inorganic 

ions were found in honey, Potassium was clearly dominant with approximately 62 %. 
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Table 3. 11. Amino acids proportions in nectar, honeydew and honey of Tilia sp. 

Amino acids [%] 
Nectar 
n= 8 

Honeydew 
n= 9 

Honey 
n=12 

Glutamate (GLU) 8 ± 2a 26 ± 8b 7 ± 3a 
Glutamine (GLN) 15 ± 4a 8 ± 3a,b 4 ± 2b 
Aspartate (ASP) 6 ± 2a 17 ± 2b 6 ± 3a 
Asparagine(ASN) 12 ± 7a 18 ± 17b 4 ± 3a 
Proline (PRO) 1 ± 0a 1 ± 0a 55 ± 12b 
Glycine (GLY) 2 ± 1a 3 ± 1a 1 ± 0a 
Serine (SER) 7 ± 1a 11 ± 3b 1 ± 0c 
Alanine (ALA) 17 ± 4a 3 ± 2b 2 ± 1b 
Tyrosine (TYR) 2 ± 0a 0 ± 0a 2 ± 0a 
Arginine (ARG) 2 ± 1a 2 ± 1a 2 ± 0a 
Histidine (HIS) 1 ± 1a 1 ± 0a 2 ± 0a 
Lysine (LYS) 1 ± 0a 1 ± 0a 3 ± 1a 
Threonine (THR) 3 ± 1a 2 ± 1a 1 ± 0a 
Valine (VAL) 5 ± 1a 2 ± 0b 2 ± 0b 
Isoleucine (ILE) 7 ± 1a 1 ± 0a 1 ± 0a 
Leucine (LEU) 3 ± 0a 0 ± 0a 1 ± 0a 
Phenylalanine (PHE) 0 ± 0a 0 ± 0a 4 ± 3b 
Tryptophan (TRP) 2 ± 1a 0 ± 0a 0 ± 0a 
Methionine (MET) 1 ± 1a 0 ± 0a 0 ± 0a 
ß-Alanine (ß-ALA) 0 ± 0a 0 ± 0a 2 ± 0a 
γ-Amino-butyric acid 
(GABA) 3 ± 0a 0 ± 0a 1 ± 0a 

Further non-proteinogenic 
amino acids (NP) 1 ± 1a 3 ± 1a 0 ± 0a 

Total content 
7.1 ± 3 
mmol/L 

143 ± 88 

μmol/L 
91.90 ± 34.20 

mg/100g honey 

All values are means of independent measurements ± SD. 
Different letters represent significant differences between the sugars in nectar, honeydew and 
honey. 
Further non-proteinogenic amino acids: homoserine, phosphoserine, ornithine, and taurine. 
 

Oligosaccharide formation in Eucallipterus tiliae whole-body homogenates 

Sucrose was converted to monosaccharides and oligosaccharides in the whole-body 

homogenates of Eucallipterus tiliae (Fig 3.8). After 120 minutes glucose, fructose, trehalose, 

melezitose and erlose were formed. Glucose and fructose had the highest concentrations. In 

addition, melezitose concentration was higher than erlose.  
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Table 3. 12. Inorganic ions proportions in nectar, honeydew and honey of Tilia sp. 

Ion [%] 
Nectar 
n= 8 

Honeydew 
n= 9 

Honey 
n=12 

Cations 
Potassium (K+) 31 ± 19a 60 ± 8b 62 ± 10b 

Sodium (Na+) 18 ± 8a 2 ± 1b 5 ± 3b 
Ammonium (NH4

+) 12 ± 6a 1 ± 1b 2 ± 2b 
Magnesium (Mg2+) 5 ± 3a 10 ± 3b 5 ± 4a 
Calcium (Ca2+) 3 ± 1a 3 ± 2a 2 ± 1a 
Anions 
Chloride (Cl-) 18 ± 8a 19 ± 5a 12 ± 7a 
Phosphate (PO4

3-) 5 ± 2a 3 ± 1a 8 ± 4b 
Sulfate (SO4

2-) 3 ± 1a 2 ± 1a 2 ± 1a 
Nitrate (NO3

-) 4 ± 2a 0 ± 0a 1 ± 1a 

Total content 
71.69 ± 42.44 

mmol/L 
585 ± 487 

mmol/L 
268 ± 199 

mg/100g honey 

All values are means of independent measurements ± SD. 
Different letters represent significant differences between the sugars in nectar, honeydew and 
honey. 
 

 

Fig 3. 8. Sugar concentration in whole-body homogenates of Eucallipterus tiliae after 120 

minutes of incubation. The aphid homogenates were incubated with 10% sucrose solution. All 

values are means of n=3 independent measurements ± SD. 
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4. Discussion 
Honeydew producers feeding on phloem sap of plants produce honeydew. In addition, 

honeybees collect the honeydew, and produce honeydew honey. This work aims to clarify the 

processing of phloem sap to honeydew by aphid species and of honeydew to honey by the 

honeybees. The second part of the thesis deals with the identification of distinguishing features 

of honeydew honeys according to their botanical and zoological origins. The results of this 

work are summarized in four main sections and discussed with regard to the research questions. 

 

4.1. From phloem sap to honeydew by conifers 
Sugars  

Various hemipteran species feed on phloem sap and produce honeydew. Phloem exudates of 

bark tissues from A. alba and P. abies contained sucrose, glucose and fructose (see 3. Results: 

Section I: S1). However, glucose and fructose cannot be found normally in pure phloem sap 

(Ziegler and Mittler 1959; Fink et al.  2018). They probably stem from the wounded surface of 

the bark because of the activity of sucrose cleavage enzymes. In addition, no further 

oligosaccharides were found in phloem exudates of  A. alba and P. abies. 

Honeydew of different honeydew producers feeding on fir and spruce contains, comparable to 

the phloem exudates, glucose, fructose and sucrose. However, other oligosaccharides were also 

found in honeydew, especially melezitose and erlose (see 3. Results: Section I: table1). 

Oligosaccharides were also determined in honeydew of various other aphid species (Mittler 

1958; Bacon and Dickinson 1957; Walters and Smith 1988; Braendle et al.  2003). It is likely 

that the presence of oligosaccharides in honeydew is due to the transformation of glucose into 

glucose-containing oligomers in order to reduce the osmatic stress caused by ingested phloem 

sap (Fisher et al.  1984). 

The proportions of melezitose and erlose differ significantly between different aphid species. 

In addition, the classification of honeydew according to their zoological origins were visually 

and statistically verified (see 3. Results: Section I: Fig 3 and Table 4). Moreover, honeydew of 

different aphids feeding on the same host plants have different sugar profiles; thus, the 

zoological origins of honeydew influence honeydew sugar profile more than the botanical 

origin (Bacon and Dickinson 1957; Walters and Smith 1988). 
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Amino acids 

Aphids rely on the free amino acids of the phloem sap as their main nitrogen source. However, 

they can synthesize some amino acids (Febvay et al.  1999) and some microorganisms, such as 

several species of Buchnera, can also be involved in the synthesis of some essential amino acids 

(Downing 1980). In addition, all essential and non-essential amino acids were found in the 

phloem exudates of the tree species (see 3. Results: Section I: Table 2). Further, all essential 

amino acids were also detected in honeydew, but with low proportions compared to the phloem 

exudates. Moreover, the ratios sugar-to-amino-acids were much lower in the phloem exudates 

of fir and spruce than in the honeydew of different aphid species feeding on them (see 3. 

Results: Section I: Table 4). Sandström and Moran (2001) showed that only 1-3% of absorbed 

amino acids from the phloem sap were found in honeydew. No visual separation and no 

significant differences between amino acid profiles of different honeydews could be obtained 

(see 3. Results: Section I: Fig 3 and Table 4). As a result, amino acids occur infrequently in 

honeydew, because of their highly important roles in the aphids’ life circles. Therefore, they 

are not useful to distinguish between different honeydews. In other words, the variance of the 

amino acids data cannot be elucidated by either the hemipteran species or the host plant species. 

Inorganic ions 

The composition of cations in honeydew of the different hemipteran species roughly reflect that 

composition in the phloem exudate of A. alba and P. abies. Potassium was the main cation in 

the honeydew of all analyzed hemipteran species and the sodium proportion was lower (see 3. 

Results: Section I: Table 3 and Section VI: Table 17). Additionally, phloem exudates in all host 

plants also had similar ratios of potassium-to-sodium (see 3. Results: Section I: S3). Wyatt 

(1961) suggested a correlation between the diet of the insects and the ratio of potassium-to-

sodium in haemolymph. That can explain our results; however, it makes the cation profiles a 

non-useful feature to classify honeydew according to their botanical or zoological origins.  

The proportions of anion in honeydew differ between different hemipteran species. Further, 

while chloride is the dominant anion in the phloem exudate of  A. alba and P. abies, honeydew 

of Physokermes sp. had higher phosphate than chloride proportions (see 3. Results: Section I: 

Table 3; S3). Moreover, the high phosphate proportion caused a visual separation of some 

hemipteran species (see 3. Results: Section I: Fig 4). This indicates that some hemiptera species 

influence the anion content of the honeydew. 
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In conclusion, the sucking hemipteran and not the host plant is primarily responsible for the 

diversity of the sugar contents, especially the oligosaccharides in honeydew. In the case of 

inorganic ions, mainly the proportions of phosphate showed significant differences between the 

honeydews of different hemipteran species. In contrast, the composition of amino acids in 

honeydew was rather similar across the hemipteran species. 

 

4.2. The enzymatic formation and cleavage of melezitose 
Oligosaccharides formations in whole-body homogenates aphids 

Whole-body homogenates of C. pectinatae and C. pilicornis incubated at 30°C with sucrose 

solution produced glucose, fructose, melezitose and erlose (see 3. Results: Section I: Fig1). This 

corresponds to the results of Bacon et al.  (1956), who showed that melezitose is formed in 

whole-body homogenates incubated with sucrose solutions. However, the proportions of 

formed sugars were not the same in all aphid species. More precisely, C. pilicornis produced 

more melezitose than erlose, but C. pectinatae produced more erlose than melezitose. In other 

words, the different aphid species produced different amounts of melezitose and erlose, which 

is reason to assume that they have different enzymatic activities. 

In addition, the total rate of sucrose hydrolyses was similar in all aphid species (about 1.5 mg 

sucrose mg-1 fresh weight of aphid day-1). This indicates that the enzymatic level of 

transformation of dietary sucrose in the insect gut depends on the aphid species. As a 

conclusion, types and quantity of oligosaccharides in honeydew is influenced mainly by aphid 

species. 

Effects of different temperatures on melezitose production in aphid species 

The analysis of the data shows that the hemipteran species has a much higher influence on the 

sugar composition of the honeydew than the tree species (see 3. Results: Section I: Fig 3; Table 

5). However, Liebig (1979) found higher proportions of melezitose (up to 20%) in the 

honeydew of C. pectinatae on A. alba than was shown in this study (about 2%). Further, the 

developmental stage of the host plant or the insect can also influence the honeydew composition 

(Fischer and Shingleton 2001). Moreover, Walters and Mullin (1988) found that enzymatic 

activities increased with high sucrose concentrations in the aphid diet. Additionally, the 

honeydew composition of the same honeydew producer may vary by different environmental 
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conditions during sample collection, like weather conditions (Liebig 1979). Therefore, the 

effect of different temperatures on the production of melezitose and erlose was tested. 

Melezitose and erlose were found in all the whole-body homogenates of C. pectinatae and C. 

pilicornis incubated with sucrose at three different temperatures (25°C, 30°C and 35°C) (see 3. 

Results: Section II: Fig 3.2 and Table 3.1). Further, melezitose and erlose formations increased 

significantly in both aphid species when they were incubated with high temperature. However, 

all sugar formations increased significantly with high temperature. Further, the ratio of 

melezitose to erlose did not change in high temperature. This means that the melezitose content 

in honeydew is mainly influenced by aphid species.  

Melezitose cleavage in A. mellifera 

Melezitose was detected in various types of honeydew. It was shown that melezitose can have 

negative effects on overwintering honeybees (Imdorf et al.  2002) as well as on the quality of 

honeydew honey (Schmelz et al.  2002). Moreover, bees feeding on melezitose showed elevated 

mortality and increased disease symptoms than bees feeding on sucrose (Seeburger et al.  2020). 

The ability of honeybee to digest melezitose in newly emerged bees and worker bees was 

investigated. Newly emerged bees were able to digest melezitose to glucose and fructose (see 

3. Results:  Section III: Fig 3.3). The melezitose proportion decreased almost 30%. In addition, 

homogenates worker honeybee’s abdomen incubated with melezitose solution were also able 

to cleavage melezitose (see Section III: Fig 3.4). However, sucrose cleavage was quicker and 

more efficiently than melezitose. In order to digest oligosaccharides, honeybees organs secret 

different types of α-glucosidases, (α-glucosidases I, II and III) (Kubota et al.  2004).  Generally, 

they catalyze the splitting of an α-glucosyl residue from the non-reducing terminal side of the 

oligosaccharides having an α-glucosidic linkage to liberate α-glucose (Kubota et al.  2004). 

Their activities and locations in the honeybees’ organs are not equally distributed. They were 

found in the ventriculus, the haemolymph and the hypopharyngeal gland, from which the 

enzymes may be secreted into the honeydew. Further, they were able to split maltose, sucrose, 

and turanose, albeit with different activity levels (Kubota et al.  2004). The decrease of 

melezitose in feed experiment and the homogenates worker honeybee’s abdomen experiment 

allowed us to conclude, that some types of α-glucosidases in the honeybees’ abdomen and also 

in the hypopharyngeal gland can digest melezitose, albeit not as efficiently as sucrose. 
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4.3. From honeydew to honeydew honey by conifers 
Honeybees collect nectar and transform it to blossom honey, or nectar honey. However, at the 

end of summer when the nectar becomes sparser, honeybees gather honeydew and produce 

honeydew honey. In Germany, fir honey achieves a higher market value than spruce honey, but 

until now it is hardly possible to distinguish between the two types, e.g. on the basis of the 

flavonoid contents (Bertoncelj et al.  2011). Furthermore, honeydew honey not only has 

different botanical origins like blossom honey, but also different zoological origins, namely the 

honeydew producers. In this section, the results of sugars, amino acids, and inorganic ions of 

honeydew honey from different botanical origins (fir, spruce and pine) and from different 

zoological origins (Cinara/fir, Cinara/spruce and Physokermes/spruce) are summarized and 

discussed in order to examine whether these compounds are useful to distinguish between the 

different types of honeydew honey. 

Sugars 

Glucose and fructose make up about 60% (w/w) of fir, spruce, and pine honey and with that 

they are the dominant compounds (see Section IV: Table 3.2). Glucose and fructose contents 

were lower than that in blossom honey, but similar to honeydew honey (Ruoff et al.  2007, Pita-

Calvo and Vázquez 2018). The monosaccharides in honeydew honey can originate either 

directly from the honeydew (see Section I: Table1) or from the honeybees after the cleavage of 

di- or oligosaccharides, probably by the activity of α-glucosidases (see Section III: Table 3.1, 

Kubota et al.  2004). The latter possibility is more likely as the proportion of sucrose is higher 

in honeydew than in honeydew honey of fir and spruce (see Section I: Table1). The trehalose 

content in the honeydew honey of fir and spruce is about 2% (w/w), which is higher than that 

of several flower honeys (Pita-Calvo et al.  2017). Further, pine honey contain only 0.1% (w/w) 

of the total sugar proportions. Trehalose was also found in the honeydew of hemipteran species 

feeding on fir or spruce (see Section I: Table 1). In insects, trehalose serves as a haemolymph-

sugar and it is the major carbohydrate energy source used by insects to facilitate flight 

(Thompson 2003). 

Fir, spruce and pine honeys contained up to 10% (w/w) oligosaccharides, mainly melezitose 

and erlose. In general, honeydew honey contains more di- and oligosaccharides than flower 

honey (Ruoff et al.  2007) and melezitose was reported to be a marker for honeydew honey 

(Maurizio 1962, Slddiqui and Purgala 1968). So far there is no evidence of melezitose formation 

in honeybees, but it was found in the honeydew of different hemipteran species (see Section I: 
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Table 1; Fischer and Shingleton 2001). Like melezitose, erlose was found in the honeydew of 

different hemipteran species (see Section I: Table 1), but this could also be produced by the 

action of honeybee invertase on sucrose (Doner 1977).  

Two unknown oligosaccharides (undef 3 and undef 6) were found and there was a significant 

difference in their contents between the groups of honeydew honey (see Section IV: Table 3.2). 

The content of undef 6 was about 2 - 4-fold higher in spruce/Physokermes honey than other 

honeys. Von der Ohe and von der Ohe (1996) also reported the detection of a particular 

oligosaccharide (named L1) in Physokermes honey; the structure of this sugar, however, has 

not yet been identified. It can be assumed that undef 6 and L1 are the same oligosaccharides, 

further analyses are necessary for a final clarification. The content of undef 3 was about 10-fold 

higher in pine honey than other groups. Unfortunately, the zoological origin of the used pine 

honey samples is unknown. Blackman & Eastop (2000) listed about 170 species of aphids as 

feeding on pines. Therefore, further analyses are necessary to clarify the origin of this sugar. It 

was possible, however, to visually separate pine honey samples from fir and spruce honeys 

according to the sugar compositions (see Section IV: Fig 3.5 and Table 3.2). It was also possible 

to identify Physokermes honeys according to the sugar composition, which means that the sugar 

composition is useful to distinguish between honeys of different botanical as well as different 

zoological origins. 

Amino acids 

Although numerous amino acids were found in fir, spruce, and pine honeys, the total amino 

acid content was less than 0.1% (w/w). The amino acids in honeydew honeys can have different 

origins as well. Honeydew contains small amounts of amino acids (see Section I: Table 2; 

Douglas 2006). However, the sugar-to-amino acid ratio is higher in honeydew than in nectar, 

which means that for honeybees a honeydew diet is less rich in nitrogen than a nectar diet 

(Lohaus and Schwerdtfeger 2008, Tiedge and Lohaus 2017). The bees themselves can also 

contribute to the amino acids in honey, particularly to the amount of proline, and ripe honey 

should contain at least 180 mg proline kg-1 honey (von der Ohe et al.  1991). 

The content of some amino acids (proline, tyrosine, argenine, lysine, isoleucine and 

phenylalanine) differed significantly between the groups of honeydew honey (see Sectin IV: 

Table 3.3). Proline was the dominant amino acid in all groups. In addition, the content of proline 

was significantly higher, and the contents of the other five amino acids were significantly lower 

in fir/Cinara honey than in spruce/Cinara or in spruce/Physokermes honey. In former studies, 
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the proline and phenylalanine contents in honey were already used to characterize the botanical 

origin of the honey (Cotte et al.  2004). It was possible to identify samples of lavender honey 

on the basis of high phenylalanine contents, (Cotte et al.  2004). However, similarly high 

contents of phenylalanine were also detected in honeys of other Lamiaceae, like Rosmarinus or 

Thymus (Conte et al.  1998). One reason for this could be the high content of phenylalanine in 

the nectar of some Lamiaceae species (Petandiou et al.  2006), probably because phenylalanine 

has a phagostimulatory effect on potential pollinators, like honeybees (Inouye and Waller 

1984). Moreover, the amino acid content in honey decreases with storage time and the decrease-

rate is not identical among the individual amino acids (Iglesias et al.  2006). Therefore, the 

differentiation between different honeydew honeys solely on the basis of the amino acid 

composition appears to be insufficient (Cotte et al.  2004). Finally, a visual separation between 

pine honey and fir and spruce honey based on their amino acid profiles were obtained, but not 

between fir and spruce honey (see Section IV: Table 3.6; Table 3.7 and Fig 3.5). 

Inorganic ions 

There are more inorganic ions in honeydew honey than in flower honey (Fermo et al.  2013) 

and this can be a reason for the higher electrical conductivity of honeydew honey (Bogdanov 

et al.  2007; Silva et al.  2009). Potassium is the main inorganic ion in all honey samples (see 

Section IV: Table 3.4) and it is also the dominant ion in the honeydew of hemipteran species 

feeding on fir or spruce as well as in the phloem exudates of these tree species (see Section I: 

Table 3). Yet, not only potassium, but also the complete inorganic ion composition (with the 

exception of phosphate) in honey roughly reflects the composition in honeydew or phloem 

exudates. As inorganic ions are taken up from the soil by the plant’s roots, their contents and 

compositions in honeys indirectly depend on the soil composition and the geographical area 

(Anklam 1998, Fermo et al.  2013). That can explain the high amount of potassium and chloride 

in the pine honeys, because they have a different geographical origin. The fir and spruce honeys 

used in this study, though, were all from the same region (Schwarzwald, Baden-Württemberg, 

Germany). Differences in the inorganic ion contents in honeys are also used to identify their 

botanical origin, but the major differences were found between flower and honeydew honey 

(Fernández-Torres e al 2005, Fermo et al.  2013). 

As for the inorganic ions of fir and spruce samples, only magnesium and phosphate differed 

significantly between the three groups of honeydew honeys (see Section IV: Table 3.4). The 

content of both ions is about 1.5 - 2-fold higher in spruce/Physokermes honey than in 
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spruce/Cinara or fir/Cinara honey. This corresponds to the results on the ion composition of 

honeydew, as the proportion of phosphate was particularly high in the honeydew of 

Physokermes species located on spruce compared to Cinara species located on spruce or fir 

(see Section I: Table 3). In addition, a visual separation between pine honey and fir and spruce 

honey on the basis of the inorganic ion contents were obtained, but not between fir and spruce 

honeys (see Section IV: Table 3.6; Table 3.7 and Fig 3.5). Therefore, the inorganic ion 

composition seems to be more useful for the determination of the honeys’ zoological origin 

than its botanical origin. 

Suitability of the sugar, amino acid, and inorganic ion composition to identify the zoological 

origin of fir and spruce honey 

The contents of erlose, an undefined oligosaccharide, proline, tyrosine, arginine, lysine, 

isoleucine, phenylalanine, magnesium, and phosphate are significantly different for the three 

groups of honey. Therefore, they probably play a more important role for the identification of 

the honeys’ origins than the other metabolites or ions. Based on these compounds, a partial 

separation of the three groups of honey (fir/Cinara, spruce/Cinara, spruce/Physokermes) was 

visible in the RDA (see Section IV: Fig 3.6). The analysis of the data shows that the honeydew 

producing species (zoological origin) has a higher influence on the honey composition than the 

tree species (botanical origins) (see Section IV: Table 3.8; Table 3.9). However, the largest 

portion of the variance of the data cannot be elucidated by either of the grouping options. 

Further factors may influence the honey’s chemical composition, such as collection season, 

weather conditions, conditions of honey harvest and storage. This makes it difficult to find 

reliable chemical markers to identify botanical or zoological origins (Kaškoniene and 

Venskutonis 2010, Pita-Calvo and Vázquez 2018, Soares et al.  2017). 

In summary, spruce/Physokermes honey can be separated from spruce/Cinara or fir/Cinara 

honey by its higher contents of phosphate and an undefined oligosaccharide (undef 6). 

However, no chemical marker has been found within the categories of the analyzed compounds 

to reliably distinguish between fir/Cinara and spruce/Cinara honey. 
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4.4. Nectar, honeydew and honey profiling of lime tree 
Tilia sp. 

Honeydew of E. tiliae feeding on Tilia sp. contains glucose, fructose and sucrose. However, 

other oligosaccharides were also found in honeydew, especially melezitose and erlose. In 

addition, melezitose proportion was higher than erlose (see 3. Results: Section V: Table 3.10). 

Whole-body homogenates of E. tilia incubated at 30°C with sucrose solution produced glucose, 

fructose, melezitose and erlose (see 3. Results: Section V: Fig 3.8). No melezitose or erlose 

were found, neither in the nectar nor in the phloem exudates of Tilia sp. Glucose, fructose and 

sucrose were the main sugars (see 3. Results: Section V: Table 3.10 and Fig 3.7). Further, 

glucose and fructose had the same proportion and sucrose had the highest proportion. 

Additionally, a small amount of raffinose was also determined. Jacquemart et al.  (2018) also 

determined raffinose in nectar of Tilia sp. In addition, some plant species transport raffinose in 

their phloem sap (Nadwodnik and Lohaus 2008; Öner-Sieben and Lohaus 2014). Raffinose 

synthesis in plants occur by transferring a galactosyl from galactinol to sucrose, thereby 

releasing myo-inositol. Lime honey samples contain melezitose and erlose (see 3. Results: 

Section V: Table 3.10). Therefore, we can assume that they have zoological origin. 

All essential and non-essential amino acids were also found in honeydew and nectar of Tilia sp 

(see Section V: Table 3.11). Furthermore, the amino acid concentrations in nectar differ 

significantly between different plant species. In addition, environmental factors and pollinators 

can also influence the amino acids composition in nectar (Göttlinger et al.  2019; Tiedge and 

Lohaus 2017). 

All inorganic ions were determined in nectar, honeydew, and honey of Tilia sp. Potassium was 

the dominant ion and low amount of sodium was found in honeydew. In contrast to the 

honeydew, nectar of Tilia sp. had a significantly higher proportion of sodium; thus, there is a 

lower potassium-to-sodium ratio in nectar compared to honeydews (see 3. Results: Section V: 

Table 3.12). 
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Appendix 

List of used chemicals 

Chemical company 

Acetonitrile Roth 

Acetic acid Roth 

Calcium Chloride (CaCl2) Roth 

Chloroform VWR 

Copper(II) sulphate (CuSO4) Merck 

Di-potassium hydrogen phosphate (K2HPO4 ∙ 3 H2O) Roth 

Ethylenediaminetetraacetic acid (EDTA) Roth 

2-(4-(2-hydroxyethyl)-1-piperazinyl)-ethanesulfonic acid Sigma 

Fluorenylmethyloxycarbonylchlorid (FMOC-Cl) Roth 

Formaldehyde Roth 

Hydrochloric acid (HCl) VWR 

Isopropanol Roth 

magnesium chloride (MgCl2) Roth 

Methanol Roth 

β-Mercaptoethanol Roth 

Nitrogen, liquid Linde 

o-Phthaldialdehyd (OPA) Roth 

Potassium chloride (KCl) Roth 

Potassium hydroxide (KOH) Roth 

Potassium sodium tartrate Tetrahydrate Roth 

Phenol Roth 

Silver nitrate (AgNO3) Chempur 

Sodium carbonate (Na2CO3) Roth 

Sodium chloride (NaCl) Roth 

Sodium hydroxide (NaOH) Sigma 

Sodium thiosulfate (Na2S2O3) Roth 

Tris(hydroxymethyl)-aminomethane (Tris) Roth 

Ultrapure water Millipore Milli-Q® Anlage 
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List of used sugars 

Common name Structure company 

Glucose D(+)Glucose Merck 

Fructose D(+)Fructose Roth 

Trehalose 1- α-D- glucopyranosyl-1 α-glucopyranosid Sigma 

Nigrose O-α-D- glucopyranosyl- (1→3) -D- glucopyranose Sigma 

Maltose O-α-D- glucopyranosyl- (1→ 4) -D- glucopyranose Roth 

Isomaltose O-α-D- glucopyranosyl- (1→ 6) -D- glucopyranose Sigma 

Melibiose O-α-D- galactopyranosyl- (1→ 6) -D- glucopyranose Sigma 

Sucrose α-D-glucopyranosyl- (1→ 2)-β-D-fructofuranoside Roth 

Turanose O-α-D- glucopyranosyl- (1→ 3)-D-fructose Sigma 

Palatinose O-α-D- glucopyranosyl- (1→ 6)-D-fructose Sigma 

Maltulose O-β-D- glucopyranosyl- (1→ 4)-D-fructose Sigma 

Kojibiose α-D-glucopyranosyl-(1→2)-D-glucose Sigma 

Gentiobiose β-D-glucopyranosyl-(1→6)-D-glucopyranose Sigma 

Maltotriose 
O-α-D- glucopyranosyl- (1→ 4) - O-α-D- glucopyranosyl- 

(1→4) -D- glucopyranose 
Sigma 

Isomaltotriose 
O-α-D- glucopyranosyl- (1→ 4) - D- glucopyranosyl- (1→ 

6) -D- glucopyranose 
Sigma 

Melezitose 
O-α-D- glucopyranosyl- (1→ 3)-O-β-D-fructofuranosyl- 

(2→1) α-D- glucopyranose 
Alfa Aesar 

1-Kestose 
O-α-D- glucopyranosyl- (1→ 2)-β-D-fructofuranosyl- 

(1→) β-D- fructofuranoside 
Sigma 

Erlose 
O-α-D- glucopyranosyl- (1→ 4)- α-D-glucopyranosyl β-D-

fructofuranoside 
Sigma 

Raffinose 
α-D- galactopyranosyl- (1→ 6) -D- glucopyranose-(1→2) 

β-D- fructofuranoside 
Roth 

Stachyose 
α-D- galactopyranosyl- (1→ 6) - α-D- galactopyranosyl- 

(1→6) -D- glucopyranose-(1→2) β-D- fructofuranoside 
Sigma 
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List of used laboratory equipment 

Device company 

Autoclave H+P Labortechnik 

Binocular Zeiss 

Incubator Binder 

Drying cabinet Binder, Memmert 

Freezer -80°C FRYKA 

Heating block Biometra 

HPLC Dionex, Thermo Fisher Scientific 

Horizontal shaker VWR 

Magnetic stirrers Phoenix Instrument 

Microscope Zeiss 

Mini centrifuge Roth 

Mill ball Retsch 

Piston stroke pipette Gilson Pipetman, VWR 

pH meter Mettler Toledo 

Photometer Thermo Scientific 

Refrigerated centrifuge Hettich, VWR 

Rotary evaporator VWR 

Rough balance Ohaus Corporation 

Thermal shaker Biometra, Grant-Bio 

Table centrifuge Eppendorf, Heraeus, VWR 

Vortex shaker VWR 

Ultra balance Ohaus Corporation 
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List of abbreviations 

°C Grad Celsius 

EDTA Ethylenediaminetetraacetate 

et al.  and others ("et alii") 

Fig figure 

g gram 

HPLC High Performance Liquid Chromatography 

l Liter 

m Milli 

M Molar 

min Minute 

μ Micro 

n Number of measurements 

PH negative decadic logarithm of the H+ ion activity 

rpm rounds per minute 

RT Room temperature 

w/w weight per weight 
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